![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecopoveq | Structured version Visualization version GIF version |
Description: This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation ∼ (specified by the hypothesis) in terms of its operation 𝐹. (Contributed by NM, 16-Aug-1995.) |
Ref | Expression |
---|---|
ecopopr.1 | ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} |
Ref | Expression |
---|---|
ecopoveq | ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (⟨𝐴, 𝐵⟩ ∼ ⟨𝐶, 𝐷⟩ ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7435 | . . . 4 ⊢ ((𝑧 = 𝐴 ∧ 𝑢 = 𝐷) → (𝑧 + 𝑢) = (𝐴 + 𝐷)) | |
2 | oveq12 7435 | . . . 4 ⊢ ((𝑤 = 𝐵 ∧ 𝑣 = 𝐶) → (𝑤 + 𝑣) = (𝐵 + 𝐶)) | |
3 | 1, 2 | eqeqan12d 2742 | . . 3 ⊢ (((𝑧 = 𝐴 ∧ 𝑢 = 𝐷) ∧ (𝑤 = 𝐵 ∧ 𝑣 = 𝐶)) → ((𝑧 + 𝑢) = (𝑤 + 𝑣) ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) |
4 | 3 | an42s 659 | . 2 ⊢ (((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ (𝑣 = 𝐶 ∧ 𝑢 = 𝐷)) → ((𝑧 + 𝑢) = (𝑤 + 𝑣) ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) |
5 | ecopopr.1 | . 2 ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} | |
6 | 4, 5 | opbrop 5779 | 1 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (⟨𝐴, 𝐵⟩ ∼ ⟨𝐶, 𝐷⟩ ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ⟨cop 4638 class class class wbr 5152 {copab 5214 × cxp 5680 (class class class)co 7426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-xp 5688 df-iota 6505 df-fv 6561 df-ov 7429 |
This theorem is referenced by: ecopovsym 8844 ecopovtrn 8845 ecopover 8846 enqbreq 10950 enrbreq 11096 prsrlem1 11103 |
Copyright terms: Public domain | W3C validator |