![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecopoveq | Structured version Visualization version GIF version |
Description: This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation ∼ (specified by the hypothesis) in terms of its operation 𝐹. (Contributed by NM, 16-Aug-1995.) |
Ref | Expression |
---|---|
ecopopr.1 | ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} |
Ref | Expression |
---|---|
ecopoveq | ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (⟨𝐴, 𝐵⟩ ∼ ⟨𝐶, 𝐷⟩ ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7413 | . . . 4 ⊢ ((𝑧 = 𝐴 ∧ 𝑢 = 𝐷) → (𝑧 + 𝑢) = (𝐴 + 𝐷)) | |
2 | oveq12 7413 | . . . 4 ⊢ ((𝑤 = 𝐵 ∧ 𝑣 = 𝐶) → (𝑤 + 𝑣) = (𝐵 + 𝐶)) | |
3 | 1, 2 | eqeqan12d 2740 | . . 3 ⊢ (((𝑧 = 𝐴 ∧ 𝑢 = 𝐷) ∧ (𝑤 = 𝐵 ∧ 𝑣 = 𝐶)) → ((𝑧 + 𝑢) = (𝑤 + 𝑣) ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) |
4 | 3 | an42s 658 | . 2 ⊢ (((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ (𝑣 = 𝐶 ∧ 𝑢 = 𝐷)) → ((𝑧 + 𝑢) = (𝑤 + 𝑣) ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) |
5 | ecopopr.1 | . 2 ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} | |
6 | 4, 5 | opbrop 5766 | 1 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (⟨𝐴, 𝐵⟩ ∼ ⟨𝐶, 𝐷⟩ ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ⟨cop 4629 class class class wbr 5141 {copab 5203 × cxp 5667 (class class class)co 7404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-xp 5675 df-iota 6488 df-fv 6544 df-ov 7407 |
This theorem is referenced by: ecopovsym 8812 ecopovtrn 8813 ecopover 8814 enqbreq 10913 enrbreq 11059 prsrlem1 11066 |
Copyright terms: Public domain | W3C validator |