Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unichnidl Structured version   Visualization version   GIF version

Theorem unichnidl 38018
Description: The union of a nonempty chain of ideals is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.)
Assertion
Ref Expression
unichnidl ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → 𝐶 ∈ (Idl‘𝑅))
Distinct variable groups:   𝑅,𝑖   𝐶,𝑖,𝑗
Allowed substitution hint:   𝑅(𝑗)

Proof of Theorem unichnidl
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfss3 3984 . . . . 5 (𝐶 ⊆ (Idl‘𝑅) ↔ ∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅))
2 eqid 2735 . . . . . . . . 9 (1st𝑅) = (1st𝑅)
3 eqid 2735 . . . . . . . . 9 ran (1st𝑅) = ran (1st𝑅)
42, 3idlss 38003 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑖 ⊆ ran (1st𝑅))
54ex 412 . . . . . . 7 (𝑅 ∈ RingOps → (𝑖 ∈ (Idl‘𝑅) → 𝑖 ⊆ ran (1st𝑅)))
65ralimdv 3167 . . . . . 6 (𝑅 ∈ RingOps → (∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅)))
76imp 406 . . . . 5 ((𝑅 ∈ RingOps ∧ ∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
81, 7sylan2b 594 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
9 unissb 4944 . . . 4 ( 𝐶 ⊆ ran (1st𝑅) ↔ ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
108, 9sylibr 234 . . 3 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ⊆ ran (1st𝑅))
11103ad2antr2 1188 . 2 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → 𝐶 ⊆ ran (1st𝑅))
12 eqid 2735 . . . . . . . . . . 11 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
132, 12idl0cl 38005 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → (GId‘(1st𝑅)) ∈ 𝑖)
1413ex 412 . . . . . . . . 9 (𝑅 ∈ RingOps → (𝑖 ∈ (Idl‘𝑅) → (GId‘(1st𝑅)) ∈ 𝑖))
1514ralimdv 3167 . . . . . . . 8 (𝑅 ∈ RingOps → (∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅) → ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖))
1615imp 406 . . . . . . 7 ((𝑅 ∈ RingOps ∧ ∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅)) → ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
171, 16sylan2b 594 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
18 r19.2z 4501 . . . . . 6 ((𝐶 ≠ ∅ ∧ ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖) → ∃𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
1917, 18sylan2 593 . . . . 5 ((𝐶 ≠ ∅ ∧ (𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅))) → ∃𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
2019an12s 649 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅))) → ∃𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
21 eluni2 4916 . . . 4 ((GId‘(1st𝑅)) ∈ 𝐶 ↔ ∃𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
2220, 21sylibr 234 . . 3 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅))) → (GId‘(1st𝑅)) ∈ 𝐶)
23223adantr3 1170 . 2 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → (GId‘(1st𝑅)) ∈ 𝐶)
24 eluni2 4916 . . . 4 (𝑥 𝐶 ↔ ∃𝑘𝐶 𝑥𝑘)
25 sseq1 4021 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → (𝑖𝑗𝑘𝑗))
26 sseq2 4022 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → (𝑗𝑖𝑗𝑘))
2725, 26orbi12d 918 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → ((𝑖𝑗𝑗𝑖) ↔ (𝑘𝑗𝑗𝑘)))
2827ralbidv 3176 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (∀𝑗𝐶 (𝑖𝑗𝑗𝑖) ↔ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)))
2928rspcv 3618 . . . . . . . . . . . . 13 (𝑘𝐶 → (∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖) → ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)))
3029adantr 480 . . . . . . . . . . . 12 ((𝑘𝐶𝑥𝑘) → (∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖) → ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)))
3130ad2antlr 727 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) → (∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖) → ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)))
3231imp 406 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖)) → ∀𝑗𝐶 (𝑘𝑗𝑗𝑘))
33 eluni2 4916 . . . . . . . . . . . 12 (𝑦 𝐶 ↔ ∃𝑖𝐶 𝑦𝑖)
34 sseq2 4022 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → (𝑘𝑗𝑘𝑖))
35 sseq1 4021 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → (𝑗𝑘𝑖𝑘))
3634, 35orbi12d 918 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → ((𝑘𝑗𝑗𝑘) ↔ (𝑘𝑖𝑖𝑘)))
3736rspcv 3618 . . . . . . . . . . . . . . . . 17 (𝑖𝐶 → (∀𝑗𝐶 (𝑘𝑗𝑗𝑘) → (𝑘𝑖𝑖𝑘)))
3837ad2antrl 728 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) → (∀𝑗𝐶 (𝑘𝑗𝑗𝑘) → (𝑘𝑖𝑖𝑘)))
3938imp 406 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → (𝑘𝑖𝑖𝑘))
40 ssel2 3990 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘𝑖𝑥𝑘) → 𝑥𝑖)
4140ancoms 458 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝑘𝑘𝑖) → 𝑥𝑖)
4241adantll 714 . . . . . . . . . . . . . . . . . . . . 21 (((𝑘𝐶𝑥𝑘) ∧ 𝑘𝑖) → 𝑥𝑖)
43 ssel2 3990 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶) → 𝑖 ∈ (Idl‘𝑅))
442idladdcl 38006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑥𝑖𝑦𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝑖)
4544ancom2s 650 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑦𝑖𝑥𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝑖)
4645expr 456 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑦𝑖) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
4746an32s 652 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ∈ RingOps ∧ 𝑦𝑖) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
4843, 47sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅 ∈ RingOps ∧ 𝑦𝑖) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
4948an42s 661 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
5049anasss 466 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
5150imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ 𝑥𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝑖)
52 simprl 771 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖)) → 𝑖𝐶)
5352ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ 𝑥𝑖) → 𝑖𝐶)
54 elunii 4917 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥(1st𝑅)𝑦) ∈ 𝑖𝑖𝐶) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
5551, 53, 54syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ 𝑥𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
5642, 55sylan2 593 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ ((𝑘𝐶𝑥𝑘) ∧ 𝑘𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
5756expr 456 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ (𝑘𝐶𝑥𝑘)) → (𝑘𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
5857an32s 652 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) → (𝑘𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
5958anassrs 467 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) → (𝑘𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
6059imp 406 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ 𝑘𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
61 ssel2 3990 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑘𝑦𝑖) → 𝑦𝑘)
6261ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑖𝑖𝑘) → 𝑦𝑘)
6362adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝑖𝐶𝑦𝑖) ∧ 𝑖𝑘) → 𝑦𝑘)
64 ssel2 3990 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶) → 𝑘 ∈ (Idl‘𝑅))
652idladdcl 38006 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ (𝑥𝑘𝑦𝑘)) → (𝑥(1st𝑅)𝑦) ∈ 𝑘)
6665expr 456 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ 𝑥𝑘) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
6766an32s 652 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ 𝑘 ∈ (Idl‘𝑅)) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
6864, 67sylan2 593 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
6968an42s 661 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑘𝐶𝑥𝑘)) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
7069an32s 652 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
7170imp 406 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑦𝑘) → (𝑥(1st𝑅)𝑦) ∈ 𝑘)
72 simprl 771 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) → 𝑘𝐶)
7372ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑦𝑘) → 𝑘𝐶)
74 elunii 4917 . . . . . . . . . . . . . . . . . . 19 (((𝑥(1st𝑅)𝑦) ∈ 𝑘𝑘𝐶) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7571, 73, 74syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑦𝑘) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7663, 75sylan2 593 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ((𝑖𝐶𝑦𝑖) ∧ 𝑖𝑘)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7776anassrs 467 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ 𝑖𝑘) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7860, 77jaodan 959 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ (𝑘𝑖𝑖𝑘)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7939, 78syldan 591 . . . . . . . . . . . . . 14 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
8079an32s 652 . . . . . . . . . . . . 13 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) ∧ (𝑖𝐶𝑦𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
8180rexlimdvaa 3154 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → (∃𝑖𝐶 𝑦𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
8233, 81biimtrid 242 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → (𝑦 𝐶 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
8382ralrimiv 3143 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
8432, 83syldan 591 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖)) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
8584anasss 466 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
86853adantr1 1168 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
8786an32s 652 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) ∧ (𝑘𝐶𝑥𝑘)) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
88 eqid 2735 . . . . . . . . . . . . . . . . . 18 (2nd𝑅) = (2nd𝑅)
892, 88, 3idllmulcl 38007 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ (𝑥𝑘𝑧 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘)
9089exp43 436 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → (𝑘 ∈ (Idl‘𝑅) → (𝑥𝑘 → (𝑧 ∈ ran (1st𝑅) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘))))
9190com23 86 . . . . . . . . . . . . . . 15 (𝑅 ∈ RingOps → (𝑥𝑘 → (𝑘 ∈ (Idl‘𝑅) → (𝑧 ∈ ran (1st𝑅) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘))))
9291imp41 425 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘)
9364, 92sylanl2 681 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘)
94 simplrr 778 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → 𝑘𝐶)
95 elunii 4917 . . . . . . . . . . . . 13 (((𝑧(2nd𝑅)𝑥) ∈ 𝑘𝑘𝐶) → (𝑧(2nd𝑅)𝑥) ∈ 𝐶)
9693, 94, 95syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ 𝐶)
972, 88, 3idlrmulcl 38008 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ (𝑥𝑘𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘)
9897exp43 436 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → (𝑘 ∈ (Idl‘𝑅) → (𝑥𝑘 → (𝑧 ∈ ran (1st𝑅) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘))))
9998com23 86 . . . . . . . . . . . . . . 15 (𝑅 ∈ RingOps → (𝑥𝑘 → (𝑘 ∈ (Idl‘𝑅) → (𝑧 ∈ ran (1st𝑅) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘))))
10099imp41 425 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘)
10164, 100sylanl2 681 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘)
102 elunii 4917 . . . . . . . . . . . . 13 (((𝑥(2nd𝑅)𝑧) ∈ 𝑘𝑘𝐶) → (𝑥(2nd𝑅)𝑧) ∈ 𝐶)
103101, 94, 102syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ 𝐶)
10496, 103jca 511 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
105104ralrimiva 3144 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
106105an42s 661 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑘𝐶𝑥𝑘)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
107106an32s 652 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
1081073ad2antr2 1188 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
109108an32s 652 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) ∧ (𝑘𝐶𝑥𝑘)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
11087, 109jca 511 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) ∧ (𝑘𝐶𝑥𝑘)) → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
111110rexlimdvaa 3154 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → (∃𝑘𝐶 𝑥𝑘 → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))))
11224, 111biimtrid 242 . . 3 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → (𝑥 𝐶 → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))))
113112ralrimiv 3143 . 2 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
1142, 88, 3, 12isidl 38001 . . 3 (𝑅 ∈ RingOps → ( 𝐶 ∈ (Idl‘𝑅) ↔ ( 𝐶 ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ 𝐶 ∧ ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))))
115114adantr 480 . 2 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ( 𝐶 ∈ (Idl‘𝑅) ↔ ( 𝐶 ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ 𝐶 ∧ ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))))
11611, 23, 113, 115mpbir3and 1341 1 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → 𝐶 ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086  wcel 2106  wne 2938  wral 3059  wrex 3068  wss 3963  c0 4339   cuni 4912  ran crn 5690  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  GIdcgi 30519  RingOpscrngo 37881  Idlcidl 37994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-idl 37997
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator