Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unichnidl Structured version   Visualization version   GIF version

Theorem unichnidl 36189
Description: The union of a nonempty chain of ideals is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.)
Assertion
Ref Expression
unichnidl ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → 𝐶 ∈ (Idl‘𝑅))
Distinct variable groups:   𝑅,𝑖   𝐶,𝑖,𝑗
Allowed substitution hint:   𝑅(𝑗)

Proof of Theorem unichnidl
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfss3 3909 . . . . 5 (𝐶 ⊆ (Idl‘𝑅) ↔ ∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅))
2 eqid 2738 . . . . . . . . 9 (1st𝑅) = (1st𝑅)
3 eqid 2738 . . . . . . . . 9 ran (1st𝑅) = ran (1st𝑅)
42, 3idlss 36174 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑖 ⊆ ran (1st𝑅))
54ex 413 . . . . . . 7 (𝑅 ∈ RingOps → (𝑖 ∈ (Idl‘𝑅) → 𝑖 ⊆ ran (1st𝑅)))
65ralimdv 3109 . . . . . 6 (𝑅 ∈ RingOps → (∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅)))
76imp 407 . . . . 5 ((𝑅 ∈ RingOps ∧ ∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
81, 7sylan2b 594 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
9 unissb 4873 . . . 4 ( 𝐶 ⊆ ran (1st𝑅) ↔ ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
108, 9sylibr 233 . . 3 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ⊆ ran (1st𝑅))
11103ad2antr2 1188 . 2 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → 𝐶 ⊆ ran (1st𝑅))
12 eqid 2738 . . . . . . . . . . 11 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
132, 12idl0cl 36176 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → (GId‘(1st𝑅)) ∈ 𝑖)
1413ex 413 . . . . . . . . 9 (𝑅 ∈ RingOps → (𝑖 ∈ (Idl‘𝑅) → (GId‘(1st𝑅)) ∈ 𝑖))
1514ralimdv 3109 . . . . . . . 8 (𝑅 ∈ RingOps → (∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅) → ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖))
1615imp 407 . . . . . . 7 ((𝑅 ∈ RingOps ∧ ∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅)) → ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
171, 16sylan2b 594 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
18 r19.2z 4425 . . . . . 6 ((𝐶 ≠ ∅ ∧ ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖) → ∃𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
1917, 18sylan2 593 . . . . 5 ((𝐶 ≠ ∅ ∧ (𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅))) → ∃𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
2019an12s 646 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅))) → ∃𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
21 eluni2 4843 . . . 4 ((GId‘(1st𝑅)) ∈ 𝐶 ↔ ∃𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
2220, 21sylibr 233 . . 3 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅))) → (GId‘(1st𝑅)) ∈ 𝐶)
23223adantr3 1170 . 2 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → (GId‘(1st𝑅)) ∈ 𝐶)
24 eluni2 4843 . . . 4 (𝑥 𝐶 ↔ ∃𝑘𝐶 𝑥𝑘)
25 sseq1 3946 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → (𝑖𝑗𝑘𝑗))
26 sseq2 3947 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → (𝑗𝑖𝑗𝑘))
2725, 26orbi12d 916 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → ((𝑖𝑗𝑗𝑖) ↔ (𝑘𝑗𝑗𝑘)))
2827ralbidv 3112 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (∀𝑗𝐶 (𝑖𝑗𝑗𝑖) ↔ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)))
2928rspcv 3557 . . . . . . . . . . . . 13 (𝑘𝐶 → (∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖) → ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)))
3029adantr 481 . . . . . . . . . . . 12 ((𝑘𝐶𝑥𝑘) → (∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖) → ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)))
3130ad2antlr 724 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) → (∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖) → ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)))
3231imp 407 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖)) → ∀𝑗𝐶 (𝑘𝑗𝑗𝑘))
33 eluni2 4843 . . . . . . . . . . . 12 (𝑦 𝐶 ↔ ∃𝑖𝐶 𝑦𝑖)
34 sseq2 3947 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → (𝑘𝑗𝑘𝑖))
35 sseq1 3946 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → (𝑗𝑘𝑖𝑘))
3634, 35orbi12d 916 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → ((𝑘𝑗𝑗𝑘) ↔ (𝑘𝑖𝑖𝑘)))
3736rspcv 3557 . . . . . . . . . . . . . . . . 17 (𝑖𝐶 → (∀𝑗𝐶 (𝑘𝑗𝑗𝑘) → (𝑘𝑖𝑖𝑘)))
3837ad2antrl 725 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) → (∀𝑗𝐶 (𝑘𝑗𝑗𝑘) → (𝑘𝑖𝑖𝑘)))
3938imp 407 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → (𝑘𝑖𝑖𝑘))
40 ssel2 3916 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘𝑖𝑥𝑘) → 𝑥𝑖)
4140ancoms 459 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝑘𝑘𝑖) → 𝑥𝑖)
4241adantll 711 . . . . . . . . . . . . . . . . . . . . 21 (((𝑘𝐶𝑥𝑘) ∧ 𝑘𝑖) → 𝑥𝑖)
43 ssel2 3916 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶) → 𝑖 ∈ (Idl‘𝑅))
442idladdcl 36177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑥𝑖𝑦𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝑖)
4544ancom2s 647 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑦𝑖𝑥𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝑖)
4645expr 457 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑦𝑖) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
4746an32s 649 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ∈ RingOps ∧ 𝑦𝑖) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
4843, 47sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅 ∈ RingOps ∧ 𝑦𝑖) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
4948an42s 658 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
5049anasss 467 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
5150imp 407 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ 𝑥𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝑖)
52 simprl 768 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖)) → 𝑖𝐶)
5352ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ 𝑥𝑖) → 𝑖𝐶)
54 elunii 4844 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥(1st𝑅)𝑦) ∈ 𝑖𝑖𝐶) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
5551, 53, 54syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ 𝑥𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
5642, 55sylan2 593 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ ((𝑘𝐶𝑥𝑘) ∧ 𝑘𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
5756expr 457 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ (𝑘𝐶𝑥𝑘)) → (𝑘𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
5857an32s 649 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) → (𝑘𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
5958anassrs 468 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) → (𝑘𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
6059imp 407 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ 𝑘𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
61 ssel2 3916 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑘𝑦𝑖) → 𝑦𝑘)
6261ancoms 459 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑖𝑖𝑘) → 𝑦𝑘)
6362adantll 711 . . . . . . . . . . . . . . . . . 18 (((𝑖𝐶𝑦𝑖) ∧ 𝑖𝑘) → 𝑦𝑘)
64 ssel2 3916 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶) → 𝑘 ∈ (Idl‘𝑅))
652idladdcl 36177 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ (𝑥𝑘𝑦𝑘)) → (𝑥(1st𝑅)𝑦) ∈ 𝑘)
6665expr 457 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ 𝑥𝑘) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
6766an32s 649 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ 𝑘 ∈ (Idl‘𝑅)) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
6864, 67sylan2 593 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
6968an42s 658 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑘𝐶𝑥𝑘)) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
7069an32s 649 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
7170imp 407 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑦𝑘) → (𝑥(1st𝑅)𝑦) ∈ 𝑘)
72 simprl 768 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) → 𝑘𝐶)
7372ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑦𝑘) → 𝑘𝐶)
74 elunii 4844 . . . . . . . . . . . . . . . . . . 19 (((𝑥(1st𝑅)𝑦) ∈ 𝑘𝑘𝐶) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7571, 73, 74syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑦𝑘) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7663, 75sylan2 593 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ((𝑖𝐶𝑦𝑖) ∧ 𝑖𝑘)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7776anassrs 468 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ 𝑖𝑘) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7860, 77jaodan 955 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ (𝑘𝑖𝑖𝑘)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7939, 78syldan 591 . . . . . . . . . . . . . 14 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
8079an32s 649 . . . . . . . . . . . . 13 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) ∧ (𝑖𝐶𝑦𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
8180rexlimdvaa 3214 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → (∃𝑖𝐶 𝑦𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
8233, 81syl5bi 241 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → (𝑦 𝐶 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
8382ralrimiv 3102 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
8432, 83syldan 591 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖)) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
8584anasss 467 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
86853adantr1 1168 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
8786an32s 649 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) ∧ (𝑘𝐶𝑥𝑘)) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
88 eqid 2738 . . . . . . . . . . . . . . . . . 18 (2nd𝑅) = (2nd𝑅)
892, 88, 3idllmulcl 36178 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ (𝑥𝑘𝑧 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘)
9089exp43 437 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → (𝑘 ∈ (Idl‘𝑅) → (𝑥𝑘 → (𝑧 ∈ ran (1st𝑅) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘))))
9190com23 86 . . . . . . . . . . . . . . 15 (𝑅 ∈ RingOps → (𝑥𝑘 → (𝑘 ∈ (Idl‘𝑅) → (𝑧 ∈ ran (1st𝑅) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘))))
9291imp41 426 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘)
9364, 92sylanl2 678 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘)
94 simplrr 775 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → 𝑘𝐶)
95 elunii 4844 . . . . . . . . . . . . 13 (((𝑧(2nd𝑅)𝑥) ∈ 𝑘𝑘𝐶) → (𝑧(2nd𝑅)𝑥) ∈ 𝐶)
9693, 94, 95syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ 𝐶)
972, 88, 3idlrmulcl 36179 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ (𝑥𝑘𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘)
9897exp43 437 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → (𝑘 ∈ (Idl‘𝑅) → (𝑥𝑘 → (𝑧 ∈ ran (1st𝑅) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘))))
9998com23 86 . . . . . . . . . . . . . . 15 (𝑅 ∈ RingOps → (𝑥𝑘 → (𝑘 ∈ (Idl‘𝑅) → (𝑧 ∈ ran (1st𝑅) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘))))
10099imp41 426 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘)
10164, 100sylanl2 678 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘)
102 elunii 4844 . . . . . . . . . . . . 13 (((𝑥(2nd𝑅)𝑧) ∈ 𝑘𝑘𝐶) → (𝑥(2nd𝑅)𝑧) ∈ 𝐶)
103101, 94, 102syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ 𝐶)
10496, 103jca 512 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
105104ralrimiva 3103 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
106105an42s 658 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑘𝐶𝑥𝑘)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
107106an32s 649 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
1081073ad2antr2 1188 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
109108an32s 649 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) ∧ (𝑘𝐶𝑥𝑘)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
11087, 109jca 512 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) ∧ (𝑘𝐶𝑥𝑘)) → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
111110rexlimdvaa 3214 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → (∃𝑘𝐶 𝑥𝑘 → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))))
11224, 111syl5bi 241 . . 3 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → (𝑥 𝐶 → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))))
113112ralrimiv 3102 . 2 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
1142, 88, 3, 12isidl 36172 . . 3 (𝑅 ∈ RingOps → ( 𝐶 ∈ (Idl‘𝑅) ↔ ( 𝐶 ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ 𝐶 ∧ ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))))
115114adantr 481 . 2 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ( 𝐶 ∈ (Idl‘𝑅) ↔ ( 𝐶 ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ 𝐶 ∧ ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))))
11611, 23, 113, 115mpbir3and 1341 1 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → 𝐶 ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086  wcel 2106  wne 2943  wral 3064  wrex 3065  wss 3887  c0 4256   cuni 4839  ran crn 5590  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  GIdcgi 28852  RingOpscrngo 36052  Idlcidl 36165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-idl 36168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator