| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dfss3 3972 | . . . . 5
⊢ (𝐶 ⊆ (Idl‘𝑅) ↔ ∀𝑖 ∈ 𝐶 𝑖 ∈ (Idl‘𝑅)) | 
| 2 |  | eqid 2737 | . . . . . . . . 9
⊢
(1st ‘𝑅) = (1st ‘𝑅) | 
| 3 |  | eqid 2737 | . . . . . . . . 9
⊢ ran
(1st ‘𝑅) =
ran (1st ‘𝑅) | 
| 4 | 2, 3 | idlss 38023 | . . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑖 ⊆ ran (1st ‘𝑅)) | 
| 5 | 4 | ex 412 | . . . . . . 7
⊢ (𝑅 ∈ RingOps → (𝑖 ∈ (Idl‘𝑅) → 𝑖 ⊆ ran (1st ‘𝑅))) | 
| 6 | 5 | ralimdv 3169 | . . . . . 6
⊢ (𝑅 ∈ RingOps →
(∀𝑖 ∈ 𝐶 𝑖 ∈ (Idl‘𝑅) → ∀𝑖 ∈ 𝐶 𝑖 ⊆ ran (1st ‘𝑅))) | 
| 7 | 6 | imp 406 | . . . . 5
⊢ ((𝑅 ∈ RingOps ∧
∀𝑖 ∈ 𝐶 𝑖 ∈ (Idl‘𝑅)) → ∀𝑖 ∈ 𝐶 𝑖 ⊆ ran (1st ‘𝑅)) | 
| 8 | 1, 7 | sylan2b 594 | . . . 4
⊢ ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖 ∈ 𝐶 𝑖 ⊆ ran (1st ‘𝑅)) | 
| 9 |  | unissb 4939 | . . . 4
⊢ (∪ 𝐶
⊆ ran (1st ‘𝑅) ↔ ∀𝑖 ∈ 𝐶 𝑖 ⊆ ran (1st ‘𝑅)) | 
| 10 | 8, 9 | sylibr 234 | . . 3
⊢ ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∪ 𝐶
⊆ ran (1st ‘𝑅)) | 
| 11 | 10 | 3ad2antr2 1190 | . 2
⊢ ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) → ∪ 𝐶 ⊆ ran (1st
‘𝑅)) | 
| 12 |  | eqid 2737 | . . . . . . . . . . 11
⊢
(GId‘(1st ‘𝑅)) = (GId‘(1st ‘𝑅)) | 
| 13 | 2, 12 | idl0cl 38025 | . . . . . . . . . 10
⊢ ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) →
(GId‘(1st ‘𝑅)) ∈ 𝑖) | 
| 14 | 13 | ex 412 | . . . . . . . . 9
⊢ (𝑅 ∈ RingOps → (𝑖 ∈ (Idl‘𝑅) →
(GId‘(1st ‘𝑅)) ∈ 𝑖)) | 
| 15 | 14 | ralimdv 3169 | . . . . . . . 8
⊢ (𝑅 ∈ RingOps →
(∀𝑖 ∈ 𝐶 𝑖 ∈ (Idl‘𝑅) → ∀𝑖 ∈ 𝐶 (GId‘(1st ‘𝑅)) ∈ 𝑖)) | 
| 16 | 15 | imp 406 | . . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧
∀𝑖 ∈ 𝐶 𝑖 ∈ (Idl‘𝑅)) → ∀𝑖 ∈ 𝐶 (GId‘(1st ‘𝑅)) ∈ 𝑖) | 
| 17 | 1, 16 | sylan2b 594 | . . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖 ∈ 𝐶 (GId‘(1st ‘𝑅)) ∈ 𝑖) | 
| 18 |  | r19.2z 4495 | . . . . . 6
⊢ ((𝐶 ≠ ∅ ∧
∀𝑖 ∈ 𝐶 (GId‘(1st
‘𝑅)) ∈ 𝑖) → ∃𝑖 ∈ 𝐶 (GId‘(1st ‘𝑅)) ∈ 𝑖) | 
| 19 | 17, 18 | sylan2 593 | . . . . 5
⊢ ((𝐶 ≠ ∅ ∧ (𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅))) → ∃𝑖 ∈ 𝐶 (GId‘(1st ‘𝑅)) ∈ 𝑖) | 
| 20 | 19 | an12s 649 | . . . 4
⊢ ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅))) → ∃𝑖 ∈ 𝐶 (GId‘(1st ‘𝑅)) ∈ 𝑖) | 
| 21 |  | eluni2 4911 | . . . 4
⊢
((GId‘(1st ‘𝑅)) ∈ ∪ 𝐶 ↔ ∃𝑖 ∈ 𝐶 (GId‘(1st ‘𝑅)) ∈ 𝑖) | 
| 22 | 20, 21 | sylibr 234 | . . 3
⊢ ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅))) →
(GId‘(1st ‘𝑅)) ∈ ∪ 𝐶) | 
| 23 | 22 | 3adantr3 1172 | . 2
⊢ ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) → (GId‘(1st
‘𝑅)) ∈ ∪ 𝐶) | 
| 24 |  | eluni2 4911 | . . . 4
⊢ (𝑥 ∈ ∪ 𝐶
↔ ∃𝑘 ∈
𝐶 𝑥 ∈ 𝑘) | 
| 25 |  | sseq1 4009 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑘 → (𝑖 ⊆ 𝑗 ↔ 𝑘 ⊆ 𝑗)) | 
| 26 |  | sseq2 4010 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑘 → (𝑗 ⊆ 𝑖 ↔ 𝑗 ⊆ 𝑘)) | 
| 27 | 25, 26 | orbi12d 919 | . . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑘 → ((𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖) ↔ (𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘))) | 
| 28 | 27 | ralbidv 3178 | . . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑘 → (∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖) ↔ ∀𝑗 ∈ 𝐶 (𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘))) | 
| 29 | 28 | rspcv 3618 | . . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝐶 → (∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖) → ∀𝑗 ∈ 𝐶 (𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘))) | 
| 30 | 29 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘) → (∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖) → ∀𝑗 ∈ 𝐶 (𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘))) | 
| 31 | 30 | ad2antlr 727 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) → (∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖) → ∀𝑗 ∈ 𝐶 (𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘))) | 
| 32 | 31 | imp 406 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖)) → ∀𝑗 ∈ 𝐶 (𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘)) | 
| 33 |  | eluni2 4911 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ ∪ 𝐶
↔ ∃𝑖 ∈
𝐶 𝑦 ∈ 𝑖) | 
| 34 |  | sseq2 4010 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑖 → (𝑘 ⊆ 𝑗 ↔ 𝑘 ⊆ 𝑖)) | 
| 35 |  | sseq1 4009 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑖 → (𝑗 ⊆ 𝑘 ↔ 𝑖 ⊆ 𝑘)) | 
| 36 | 34, 35 | orbi12d 919 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑖 → ((𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘) ↔ (𝑘 ⊆ 𝑖 ∨ 𝑖 ⊆ 𝑘))) | 
| 37 | 36 | rspcv 3618 | . . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ 𝐶 → (∀𝑗 ∈ 𝐶 (𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘) → (𝑘 ⊆ 𝑖 ∨ 𝑖 ⊆ 𝑘))) | 
| 38 | 37 | ad2antrl 728 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖)) → (∀𝑗 ∈ 𝐶 (𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘) → (𝑘 ⊆ 𝑖 ∨ 𝑖 ⊆ 𝑘))) | 
| 39 | 38 | imp 406 | . . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
RingOps ∧ (𝑘 ∈
𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖)) ∧ ∀𝑗 ∈ 𝐶 (𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘)) → (𝑘 ⊆ 𝑖 ∨ 𝑖 ⊆ 𝑘)) | 
| 40 |  | ssel2 3978 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ⊆ 𝑖 ∧ 𝑥 ∈ 𝑘) → 𝑥 ∈ 𝑖) | 
| 41 | 40 | ancoms 458 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ 𝑘 ∧ 𝑘 ⊆ 𝑖) → 𝑥 ∈ 𝑖) | 
| 42 | 41 | adantll 714 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘) ∧ 𝑘 ⊆ 𝑖) → 𝑥 ∈ 𝑖) | 
| 43 |  | ssel2 3978 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖 ∈ 𝐶) → 𝑖 ∈ (Idl‘𝑅)) | 
| 44 | 2 | idladdcl 38026 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑥 ∈ 𝑖 ∧ 𝑦 ∈ 𝑖)) → (𝑥(1st ‘𝑅)𝑦) ∈ 𝑖) | 
| 45 | 44 | ancom2s 650 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑦 ∈ 𝑖 ∧ 𝑥 ∈ 𝑖)) → (𝑥(1st ‘𝑅)𝑦) ∈ 𝑖) | 
| 46 | 45 | expr 456 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑦 ∈ 𝑖) → (𝑥 ∈ 𝑖 → (𝑥(1st ‘𝑅)𝑦) ∈ 𝑖)) | 
| 47 | 46 | an32s 652 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑅 ∈ RingOps ∧ 𝑦 ∈ 𝑖) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑥 ∈ 𝑖 → (𝑥(1st ‘𝑅)𝑦) ∈ 𝑖)) | 
| 48 | 43, 47 | sylan2 593 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑅 ∈ RingOps ∧ 𝑦 ∈ 𝑖) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖 ∈ 𝐶)) → (𝑥 ∈ 𝑖 → (𝑥(1st ‘𝑅)𝑦) ∈ 𝑖)) | 
| 49 | 48 | an42s 661 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖)) → (𝑥 ∈ 𝑖 → (𝑥(1st ‘𝑅)𝑦) ∈ 𝑖)) | 
| 50 | 49 | anasss 466 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖))) → (𝑥 ∈ 𝑖 → (𝑥(1st ‘𝑅)𝑦) ∈ 𝑖)) | 
| 51 | 50 | imp 406 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖))) ∧ 𝑥 ∈ 𝑖) → (𝑥(1st ‘𝑅)𝑦) ∈ 𝑖) | 
| 52 |  | simprl 771 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖)) → 𝑖 ∈ 𝐶) | 
| 53 | 52 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖))) ∧ 𝑥 ∈ 𝑖) → 𝑖 ∈ 𝐶) | 
| 54 |  | elunii 4912 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥(1st ‘𝑅)𝑦) ∈ 𝑖 ∧ 𝑖 ∈ 𝐶) → (𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶) | 
| 55 | 51, 53, 54 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖))) ∧ 𝑥 ∈ 𝑖) → (𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶) | 
| 56 | 42, 55 | sylan2 593 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖))) ∧ ((𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘) ∧ 𝑘 ⊆ 𝑖)) → (𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶) | 
| 57 | 56 | expr 456 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖))) ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) → (𝑘 ⊆ 𝑖 → (𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶)) | 
| 58 | 57 | an32s 652 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖))) → (𝑘 ⊆ 𝑖 → (𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶)) | 
| 59 | 58 | anassrs 467 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖)) → (𝑘 ⊆ 𝑖 → (𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶)) | 
| 60 | 59 | imp 406 | . . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
RingOps ∧ (𝑘 ∈
𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖)) ∧ 𝑘 ⊆ 𝑖) → (𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶) | 
| 61 |  | ssel2 3978 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ⊆ 𝑘 ∧ 𝑦 ∈ 𝑖) → 𝑦 ∈ 𝑘) | 
| 62 | 61 | ancoms 458 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ 𝑖 ∧ 𝑖 ⊆ 𝑘) → 𝑦 ∈ 𝑘) | 
| 63 | 62 | adantll 714 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖) ∧ 𝑖 ⊆ 𝑘) → 𝑦 ∈ 𝑘) | 
| 64 |  | ssel2 3978 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘 ∈ 𝐶) → 𝑘 ∈ (Idl‘𝑅)) | 
| 65 | 2 | idladdcl 38026 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑘)) → (𝑥(1st ‘𝑅)𝑦) ∈ 𝑘) | 
| 66 | 65 | expr 456 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ 𝑥 ∈ 𝑘) → (𝑦 ∈ 𝑘 → (𝑥(1st ‘𝑅)𝑦) ∈ 𝑘)) | 
| 67 | 66 | an32s 652 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘) ∧ 𝑘 ∈ (Idl‘𝑅)) → (𝑦 ∈ 𝑘 → (𝑥(1st ‘𝑅)𝑦) ∈ 𝑘)) | 
| 68 | 64, 67 | sylan2 593 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘 ∈ 𝐶)) → (𝑦 ∈ 𝑘 → (𝑥(1st ‘𝑅)𝑦) ∈ 𝑘)) | 
| 69 | 68 | an42s 661 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) → (𝑦 ∈ 𝑘 → (𝑥(1st ‘𝑅)𝑦) ∈ 𝑘)) | 
| 70 | 69 | an32s 652 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) → (𝑦 ∈ 𝑘 → (𝑥(1st ‘𝑅)𝑦) ∈ 𝑘)) | 
| 71 | 70 | imp 406 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑦 ∈ 𝑘) → (𝑥(1st ‘𝑅)𝑦) ∈ 𝑘) | 
| 72 |  | simprl 771 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) → 𝑘 ∈ 𝐶) | 
| 73 | 72 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑦 ∈ 𝑘) → 𝑘 ∈ 𝐶) | 
| 74 |  | elunii 4912 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥(1st ‘𝑅)𝑦) ∈ 𝑘 ∧ 𝑘 ∈ 𝐶) → (𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶) | 
| 75 | 71, 73, 74 | syl2anc 584 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑦 ∈ 𝑘) → (𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶) | 
| 76 | 63, 75 | sylan2 593 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ((𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖) ∧ 𝑖 ⊆ 𝑘)) → (𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶) | 
| 77 | 76 | anassrs 467 | . . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
RingOps ∧ (𝑘 ∈
𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖)) ∧ 𝑖 ⊆ 𝑘) → (𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶) | 
| 78 | 60, 77 | jaodan 960 | . . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
RingOps ∧ (𝑘 ∈
𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖)) ∧ (𝑘 ⊆ 𝑖 ∨ 𝑖 ⊆ 𝑘)) → (𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶) | 
| 79 | 39, 78 | syldan 591 | . . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
RingOps ∧ (𝑘 ∈
𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖)) ∧ ∀𝑗 ∈ 𝐶 (𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘)) → (𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶) | 
| 80 | 79 | an32s 652 | . . . . . . . . . . . . 13
⊢
(((((𝑅 ∈
RingOps ∧ (𝑘 ∈
𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗 ∈ 𝐶 (𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘)) ∧ (𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖)) → (𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶) | 
| 81 | 80 | rexlimdvaa 3156 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗 ∈ 𝐶 (𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘)) → (∃𝑖 ∈ 𝐶 𝑦 ∈ 𝑖 → (𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶)) | 
| 82 | 33, 81 | biimtrid 242 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗 ∈ 𝐶 (𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘)) → (𝑦 ∈ ∪ 𝐶 → (𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶)) | 
| 83 | 82 | ralrimiv 3145 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗 ∈ 𝐶 (𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘)) → ∀𝑦 ∈ ∪ 𝐶(𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶) | 
| 84 | 32, 83 | syldan 591 | . . . . . . . . 9
⊢ ((((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖)) → ∀𝑦 ∈ ∪ 𝐶(𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶) | 
| 85 | 84 | anasss 466 | . . . . . . . 8
⊢ (((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) → ∀𝑦 ∈ ∪ 𝐶(𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶) | 
| 86 | 85 | 3adantr1 1170 | . . . . . . 7
⊢ (((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) → ∀𝑦 ∈ ∪ 𝐶(𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶) | 
| 87 | 86 | an32s 652 | . . . . . 6
⊢ (((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) → ∀𝑦 ∈ ∪ 𝐶(𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶) | 
| 88 |  | eqid 2737 | . . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘𝑅) = (2nd ‘𝑅) | 
| 89 | 2, 88, 3 | idllmulcl 38027 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ (𝑥 ∈ 𝑘 ∧ 𝑧 ∈ ran (1st ‘𝑅))) → (𝑧(2nd ‘𝑅)𝑥) ∈ 𝑘) | 
| 90 | 89 | exp43 436 | . . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ RingOps → (𝑘 ∈ (Idl‘𝑅) → (𝑥 ∈ 𝑘 → (𝑧 ∈ ran (1st ‘𝑅) → (𝑧(2nd ‘𝑅)𝑥) ∈ 𝑘)))) | 
| 91 | 90 | com23 86 | . . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ RingOps → (𝑥 ∈ 𝑘 → (𝑘 ∈ (Idl‘𝑅) → (𝑧 ∈ ran (1st ‘𝑅) → (𝑧(2nd ‘𝑅)𝑥) ∈ 𝑘)))) | 
| 92 | 91 | imp41 425 | . . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘) ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st ‘𝑅)) → (𝑧(2nd ‘𝑅)𝑥) ∈ 𝑘) | 
| 93 | 64, 92 | sylanl2 681 | . . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘 ∈ 𝐶)) ∧ 𝑧 ∈ ran (1st ‘𝑅)) → (𝑧(2nd ‘𝑅)𝑥) ∈ 𝑘) | 
| 94 |  | simplrr 778 | . . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘 ∈ 𝐶)) ∧ 𝑧 ∈ ran (1st ‘𝑅)) → 𝑘 ∈ 𝐶) | 
| 95 |  | elunii 4912 | . . . . . . . . . . . . 13
⊢ (((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑘 ∧ 𝑘 ∈ 𝐶) → (𝑧(2nd ‘𝑅)𝑥) ∈ ∪ 𝐶) | 
| 96 | 93, 94, 95 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘 ∈ 𝐶)) ∧ 𝑧 ∈ ran (1st ‘𝑅)) → (𝑧(2nd ‘𝑅)𝑥) ∈ ∪ 𝐶) | 
| 97 | 2, 88, 3 | idlrmulcl 38028 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ (𝑥 ∈ 𝑘 ∧ 𝑧 ∈ ran (1st ‘𝑅))) → (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑘) | 
| 98 | 97 | exp43 436 | . . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ RingOps → (𝑘 ∈ (Idl‘𝑅) → (𝑥 ∈ 𝑘 → (𝑧 ∈ ran (1st ‘𝑅) → (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑘)))) | 
| 99 | 98 | com23 86 | . . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ RingOps → (𝑥 ∈ 𝑘 → (𝑘 ∈ (Idl‘𝑅) → (𝑧 ∈ ran (1st ‘𝑅) → (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑘)))) | 
| 100 | 99 | imp41 425 | . . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘) ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st ‘𝑅)) → (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑘) | 
| 101 | 64, 100 | sylanl2 681 | . . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘 ∈ 𝐶)) ∧ 𝑧 ∈ ran (1st ‘𝑅)) → (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑘) | 
| 102 |  | elunii 4912 | . . . . . . . . . . . . 13
⊢ (((𝑥(2nd ‘𝑅)𝑧) ∈ 𝑘 ∧ 𝑘 ∈ 𝐶) → (𝑥(2nd ‘𝑅)𝑧) ∈ ∪ 𝐶) | 
| 103 | 101, 94, 102 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘 ∈ 𝐶)) ∧ 𝑧 ∈ ran (1st ‘𝑅)) → (𝑥(2nd ‘𝑅)𝑧) ∈ ∪ 𝐶) | 
| 104 | 96, 103 | jca 511 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘 ∈ 𝐶)) ∧ 𝑧 ∈ ran (1st ‘𝑅)) → ((𝑧(2nd ‘𝑅)𝑥) ∈ ∪ 𝐶 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ ∪ 𝐶)) | 
| 105 | 104 | ralrimiva 3146 | . . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘 ∈ 𝐶)) → ∀𝑧 ∈ ran (1st ‘𝑅)((𝑧(2nd ‘𝑅)𝑥) ∈ ∪ 𝐶 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ ∪ 𝐶)) | 
| 106 | 105 | an42s 661 | . . . . . . . . 9
⊢ (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) → ∀𝑧 ∈ ran (1st ‘𝑅)((𝑧(2nd ‘𝑅)𝑥) ∈ ∪ 𝐶 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ ∪ 𝐶)) | 
| 107 | 106 | an32s 652 | . . . . . . . 8
⊢ (((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑧 ∈ ran (1st ‘𝑅)((𝑧(2nd ‘𝑅)𝑥) ∈ ∪ 𝐶 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ ∪ 𝐶)) | 
| 108 | 107 | 3ad2antr2 1190 | . . . . . . 7
⊢ (((𝑅 ∈ RingOps ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) → ∀𝑧 ∈ ran (1st ‘𝑅)((𝑧(2nd ‘𝑅)𝑥) ∈ ∪ 𝐶 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ ∪ 𝐶)) | 
| 109 | 108 | an32s 652 | . . . . . 6
⊢ (((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) → ∀𝑧 ∈ ran (1st ‘𝑅)((𝑧(2nd ‘𝑅)𝑥) ∈ ∪ 𝐶 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ ∪ 𝐶)) | 
| 110 | 87, 109 | jca 511 | . . . . 5
⊢ (((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) ∧ (𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘)) → (∀𝑦 ∈ ∪ 𝐶(𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶 ∧ ∀𝑧 ∈ ran (1st
‘𝑅)((𝑧(2nd ‘𝑅)𝑥) ∈ ∪ 𝐶 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ ∪ 𝐶))) | 
| 111 | 110 | rexlimdvaa 3156 | . . . 4
⊢ ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) → (∃𝑘 ∈ 𝐶 𝑥 ∈ 𝑘 → (∀𝑦 ∈ ∪ 𝐶(𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶 ∧ ∀𝑧 ∈ ran (1st
‘𝑅)((𝑧(2nd ‘𝑅)𝑥) ∈ ∪ 𝐶 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ ∪ 𝐶)))) | 
| 112 | 24, 111 | biimtrid 242 | . . 3
⊢ ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) → (𝑥 ∈ ∪ 𝐶 → (∀𝑦 ∈ ∪ 𝐶(𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶 ∧ ∀𝑧 ∈ ran (1st
‘𝑅)((𝑧(2nd ‘𝑅)𝑥) ∈ ∪ 𝐶 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ ∪ 𝐶)))) | 
| 113 | 112 | ralrimiv 3145 | . 2
⊢ ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) → ∀𝑥 ∈ ∪ 𝐶(∀𝑦 ∈ ∪ 𝐶(𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶 ∧ ∀𝑧 ∈ ran (1st
‘𝑅)((𝑧(2nd ‘𝑅)𝑥) ∈ ∪ 𝐶 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ ∪ 𝐶))) | 
| 114 | 2, 88, 3, 12 | isidl 38021 | . . 3
⊢ (𝑅 ∈ RingOps → (∪ 𝐶
∈ (Idl‘𝑅) ↔
(∪ 𝐶 ⊆ ran (1st ‘𝑅) ∧
(GId‘(1st ‘𝑅)) ∈ ∪ 𝐶 ∧ ∀𝑥 ∈ ∪ 𝐶(∀𝑦 ∈ ∪ 𝐶(𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶 ∧ ∀𝑧 ∈ ran (1st
‘𝑅)((𝑧(2nd ‘𝑅)𝑥) ∈ ∪ 𝐶 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ ∪ 𝐶))))) | 
| 115 | 114 | adantr 480 | . 2
⊢ ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) → (∪
𝐶 ∈ (Idl‘𝑅) ↔ (∪ 𝐶
⊆ ran (1st ‘𝑅) ∧ (GId‘(1st
‘𝑅)) ∈ ∪ 𝐶
∧ ∀𝑥 ∈
∪ 𝐶(∀𝑦 ∈ ∪ 𝐶(𝑥(1st ‘𝑅)𝑦) ∈ ∪ 𝐶 ∧ ∀𝑧 ∈ ran (1st
‘𝑅)((𝑧(2nd ‘𝑅)𝑥) ∈ ∪ 𝐶 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ ∪ 𝐶))))) | 
| 116 | 11, 23, 113, 115 | mpbir3and 1343 | 1
⊢ ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) → ∪ 𝐶 ∈ (Idl‘𝑅)) |