Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unichnidl Structured version   Visualization version   GIF version

Theorem unichnidl 37991
Description: The union of a nonempty chain of ideals is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.)
Assertion
Ref Expression
unichnidl ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → 𝐶 ∈ (Idl‘𝑅))
Distinct variable groups:   𝑅,𝑖   𝐶,𝑖,𝑗
Allowed substitution hint:   𝑅(𝑗)

Proof of Theorem unichnidl
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfss3 3997 . . . . 5 (𝐶 ⊆ (Idl‘𝑅) ↔ ∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅))
2 eqid 2740 . . . . . . . . 9 (1st𝑅) = (1st𝑅)
3 eqid 2740 . . . . . . . . 9 ran (1st𝑅) = ran (1st𝑅)
42, 3idlss 37976 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑖 ⊆ ran (1st𝑅))
54ex 412 . . . . . . 7 (𝑅 ∈ RingOps → (𝑖 ∈ (Idl‘𝑅) → 𝑖 ⊆ ran (1st𝑅)))
65ralimdv 3175 . . . . . 6 (𝑅 ∈ RingOps → (∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅)))
76imp 406 . . . . 5 ((𝑅 ∈ RingOps ∧ ∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
81, 7sylan2b 593 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
9 unissb 4963 . . . 4 ( 𝐶 ⊆ ran (1st𝑅) ↔ ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
108, 9sylibr 234 . . 3 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ⊆ ran (1st𝑅))
11103ad2antr2 1189 . 2 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → 𝐶 ⊆ ran (1st𝑅))
12 eqid 2740 . . . . . . . . . . 11 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
132, 12idl0cl 37978 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → (GId‘(1st𝑅)) ∈ 𝑖)
1413ex 412 . . . . . . . . 9 (𝑅 ∈ RingOps → (𝑖 ∈ (Idl‘𝑅) → (GId‘(1st𝑅)) ∈ 𝑖))
1514ralimdv 3175 . . . . . . . 8 (𝑅 ∈ RingOps → (∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅) → ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖))
1615imp 406 . . . . . . 7 ((𝑅 ∈ RingOps ∧ ∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅)) → ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
171, 16sylan2b 593 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
18 r19.2z 4518 . . . . . 6 ((𝐶 ≠ ∅ ∧ ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖) → ∃𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
1917, 18sylan2 592 . . . . 5 ((𝐶 ≠ ∅ ∧ (𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅))) → ∃𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
2019an12s 648 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅))) → ∃𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
21 eluni2 4935 . . . 4 ((GId‘(1st𝑅)) ∈ 𝐶 ↔ ∃𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
2220, 21sylibr 234 . . 3 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅))) → (GId‘(1st𝑅)) ∈ 𝐶)
23223adantr3 1171 . 2 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → (GId‘(1st𝑅)) ∈ 𝐶)
24 eluni2 4935 . . . 4 (𝑥 𝐶 ↔ ∃𝑘𝐶 𝑥𝑘)
25 sseq1 4034 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → (𝑖𝑗𝑘𝑗))
26 sseq2 4035 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → (𝑗𝑖𝑗𝑘))
2725, 26orbi12d 917 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → ((𝑖𝑗𝑗𝑖) ↔ (𝑘𝑗𝑗𝑘)))
2827ralbidv 3184 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (∀𝑗𝐶 (𝑖𝑗𝑗𝑖) ↔ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)))
2928rspcv 3631 . . . . . . . . . . . . 13 (𝑘𝐶 → (∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖) → ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)))
3029adantr 480 . . . . . . . . . . . 12 ((𝑘𝐶𝑥𝑘) → (∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖) → ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)))
3130ad2antlr 726 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) → (∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖) → ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)))
3231imp 406 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖)) → ∀𝑗𝐶 (𝑘𝑗𝑗𝑘))
33 eluni2 4935 . . . . . . . . . . . 12 (𝑦 𝐶 ↔ ∃𝑖𝐶 𝑦𝑖)
34 sseq2 4035 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → (𝑘𝑗𝑘𝑖))
35 sseq1 4034 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → (𝑗𝑘𝑖𝑘))
3634, 35orbi12d 917 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → ((𝑘𝑗𝑗𝑘) ↔ (𝑘𝑖𝑖𝑘)))
3736rspcv 3631 . . . . . . . . . . . . . . . . 17 (𝑖𝐶 → (∀𝑗𝐶 (𝑘𝑗𝑗𝑘) → (𝑘𝑖𝑖𝑘)))
3837ad2antrl 727 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) → (∀𝑗𝐶 (𝑘𝑗𝑗𝑘) → (𝑘𝑖𝑖𝑘)))
3938imp 406 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → (𝑘𝑖𝑖𝑘))
40 ssel2 4003 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘𝑖𝑥𝑘) → 𝑥𝑖)
4140ancoms 458 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝑘𝑘𝑖) → 𝑥𝑖)
4241adantll 713 . . . . . . . . . . . . . . . . . . . . 21 (((𝑘𝐶𝑥𝑘) ∧ 𝑘𝑖) → 𝑥𝑖)
43 ssel2 4003 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶) → 𝑖 ∈ (Idl‘𝑅))
442idladdcl 37979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑥𝑖𝑦𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝑖)
4544ancom2s 649 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑦𝑖𝑥𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝑖)
4645expr 456 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑦𝑖) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
4746an32s 651 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ∈ RingOps ∧ 𝑦𝑖) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
4843, 47sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅 ∈ RingOps ∧ 𝑦𝑖) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
4948an42s 660 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
5049anasss 466 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
5150imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ 𝑥𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝑖)
52 simprl 770 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖)) → 𝑖𝐶)
5352ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ 𝑥𝑖) → 𝑖𝐶)
54 elunii 4936 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥(1st𝑅)𝑦) ∈ 𝑖𝑖𝐶) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
5551, 53, 54syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ 𝑥𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
5642, 55sylan2 592 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ ((𝑘𝐶𝑥𝑘) ∧ 𝑘𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
5756expr 456 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ (𝑘𝐶𝑥𝑘)) → (𝑘𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
5857an32s 651 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) → (𝑘𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
5958anassrs 467 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) → (𝑘𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
6059imp 406 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ 𝑘𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
61 ssel2 4003 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑘𝑦𝑖) → 𝑦𝑘)
6261ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑖𝑖𝑘) → 𝑦𝑘)
6362adantll 713 . . . . . . . . . . . . . . . . . 18 (((𝑖𝐶𝑦𝑖) ∧ 𝑖𝑘) → 𝑦𝑘)
64 ssel2 4003 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶) → 𝑘 ∈ (Idl‘𝑅))
652idladdcl 37979 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ (𝑥𝑘𝑦𝑘)) → (𝑥(1st𝑅)𝑦) ∈ 𝑘)
6665expr 456 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ 𝑥𝑘) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
6766an32s 651 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ 𝑘 ∈ (Idl‘𝑅)) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
6864, 67sylan2 592 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
6968an42s 660 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑘𝐶𝑥𝑘)) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
7069an32s 651 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
7170imp 406 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑦𝑘) → (𝑥(1st𝑅)𝑦) ∈ 𝑘)
72 simprl 770 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) → 𝑘𝐶)
7372ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑦𝑘) → 𝑘𝐶)
74 elunii 4936 . . . . . . . . . . . . . . . . . . 19 (((𝑥(1st𝑅)𝑦) ∈ 𝑘𝑘𝐶) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7571, 73, 74syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑦𝑘) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7663, 75sylan2 592 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ((𝑖𝐶𝑦𝑖) ∧ 𝑖𝑘)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7776anassrs 467 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ 𝑖𝑘) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7860, 77jaodan 958 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ (𝑘𝑖𝑖𝑘)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7939, 78syldan 590 . . . . . . . . . . . . . 14 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
8079an32s 651 . . . . . . . . . . . . 13 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) ∧ (𝑖𝐶𝑦𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
8180rexlimdvaa 3162 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → (∃𝑖𝐶 𝑦𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
8233, 81biimtrid 242 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → (𝑦 𝐶 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
8382ralrimiv 3151 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
8432, 83syldan 590 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖)) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
8584anasss 466 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
86853adantr1 1169 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
8786an32s 651 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) ∧ (𝑘𝐶𝑥𝑘)) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
88 eqid 2740 . . . . . . . . . . . . . . . . . 18 (2nd𝑅) = (2nd𝑅)
892, 88, 3idllmulcl 37980 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ (𝑥𝑘𝑧 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘)
9089exp43 436 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → (𝑘 ∈ (Idl‘𝑅) → (𝑥𝑘 → (𝑧 ∈ ran (1st𝑅) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘))))
9190com23 86 . . . . . . . . . . . . . . 15 (𝑅 ∈ RingOps → (𝑥𝑘 → (𝑘 ∈ (Idl‘𝑅) → (𝑧 ∈ ran (1st𝑅) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘))))
9291imp41 425 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘)
9364, 92sylanl2 680 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘)
94 simplrr 777 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → 𝑘𝐶)
95 elunii 4936 . . . . . . . . . . . . 13 (((𝑧(2nd𝑅)𝑥) ∈ 𝑘𝑘𝐶) → (𝑧(2nd𝑅)𝑥) ∈ 𝐶)
9693, 94, 95syl2anc 583 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ 𝐶)
972, 88, 3idlrmulcl 37981 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ (𝑥𝑘𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘)
9897exp43 436 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → (𝑘 ∈ (Idl‘𝑅) → (𝑥𝑘 → (𝑧 ∈ ran (1st𝑅) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘))))
9998com23 86 . . . . . . . . . . . . . . 15 (𝑅 ∈ RingOps → (𝑥𝑘 → (𝑘 ∈ (Idl‘𝑅) → (𝑧 ∈ ran (1st𝑅) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘))))
10099imp41 425 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘)
10164, 100sylanl2 680 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘)
102 elunii 4936 . . . . . . . . . . . . 13 (((𝑥(2nd𝑅)𝑧) ∈ 𝑘𝑘𝐶) → (𝑥(2nd𝑅)𝑧) ∈ 𝐶)
103101, 94, 102syl2anc 583 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ 𝐶)
10496, 103jca 511 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
105104ralrimiva 3152 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
106105an42s 660 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑘𝐶𝑥𝑘)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
107106an32s 651 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
1081073ad2antr2 1189 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
109108an32s 651 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) ∧ (𝑘𝐶𝑥𝑘)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
11087, 109jca 511 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) ∧ (𝑘𝐶𝑥𝑘)) → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
111110rexlimdvaa 3162 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → (∃𝑘𝐶 𝑥𝑘 → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))))
11224, 111biimtrid 242 . . 3 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → (𝑥 𝐶 → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))))
113112ralrimiv 3151 . 2 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
1142, 88, 3, 12isidl 37974 . . 3 (𝑅 ∈ RingOps → ( 𝐶 ∈ (Idl‘𝑅) ↔ ( 𝐶 ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ 𝐶 ∧ ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))))
115114adantr 480 . 2 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ( 𝐶 ∈ (Idl‘𝑅) ↔ ( 𝐶 ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ 𝐶 ∧ ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))))
11611, 23, 113, 115mpbir3and 1342 1 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → 𝐶 ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   cuni 4931  ran crn 5701  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  GIdcgi 30522  RingOpscrngo 37854  Idlcidl 37967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-idl 37970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator