Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unichnidl Structured version   Visualization version   GIF version

Theorem unichnidl 35488
 Description: The union of a nonempty chain of ideals is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.)
Assertion
Ref Expression
unichnidl ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → 𝐶 ∈ (Idl‘𝑅))
Distinct variable groups:   𝑅,𝑖   𝐶,𝑖,𝑗
Allowed substitution hint:   𝑅(𝑗)

Proof of Theorem unichnidl
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfss3 3903 . . . . 5 (𝐶 ⊆ (Idl‘𝑅) ↔ ∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅))
2 eqid 2798 . . . . . . . . 9 (1st𝑅) = (1st𝑅)
3 eqid 2798 . . . . . . . . 9 ran (1st𝑅) = ran (1st𝑅)
42, 3idlss 35473 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑖 ⊆ ran (1st𝑅))
54ex 416 . . . . . . 7 (𝑅 ∈ RingOps → (𝑖 ∈ (Idl‘𝑅) → 𝑖 ⊆ ran (1st𝑅)))
65ralimdv 3145 . . . . . 6 (𝑅 ∈ RingOps → (∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅)))
76imp 410 . . . . 5 ((𝑅 ∈ RingOps ∧ ∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
81, 7sylan2b 596 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
9 unissb 4833 . . . 4 ( 𝐶 ⊆ ran (1st𝑅) ↔ ∀𝑖𝐶 𝑖 ⊆ ran (1st𝑅))
108, 9sylibr 237 . . 3 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → 𝐶 ⊆ ran (1st𝑅))
11103ad2antr2 1186 . 2 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → 𝐶 ⊆ ran (1st𝑅))
12 eqid 2798 . . . . . . . . . . 11 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
132, 12idl0cl 35475 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → (GId‘(1st𝑅)) ∈ 𝑖)
1413ex 416 . . . . . . . . 9 (𝑅 ∈ RingOps → (𝑖 ∈ (Idl‘𝑅) → (GId‘(1st𝑅)) ∈ 𝑖))
1514ralimdv 3145 . . . . . . . 8 (𝑅 ∈ RingOps → (∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅) → ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖))
1615imp 410 . . . . . . 7 ((𝑅 ∈ RingOps ∧ ∀𝑖𝐶 𝑖 ∈ (Idl‘𝑅)) → ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
171, 16sylan2b 596 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
18 r19.2z 4398 . . . . . 6 ((𝐶 ≠ ∅ ∧ ∀𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖) → ∃𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
1917, 18sylan2 595 . . . . 5 ((𝐶 ≠ ∅ ∧ (𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅))) → ∃𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
2019an12s 648 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅))) → ∃𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
21 eluni2 4805 . . . 4 ((GId‘(1st𝑅)) ∈ 𝐶 ↔ ∃𝑖𝐶 (GId‘(1st𝑅)) ∈ 𝑖)
2220, 21sylibr 237 . . 3 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅))) → (GId‘(1st𝑅)) ∈ 𝐶)
23223adantr3 1168 . 2 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → (GId‘(1st𝑅)) ∈ 𝐶)
24 eluni2 4805 . . . 4 (𝑥 𝐶 ↔ ∃𝑘𝐶 𝑥𝑘)
25 sseq1 3940 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → (𝑖𝑗𝑘𝑗))
26 sseq2 3941 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → (𝑗𝑖𝑗𝑘))
2725, 26orbi12d 916 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → ((𝑖𝑗𝑗𝑖) ↔ (𝑘𝑗𝑗𝑘)))
2827ralbidv 3162 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (∀𝑗𝐶 (𝑖𝑗𝑗𝑖) ↔ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)))
2928rspcv 3566 . . . . . . . . . . . . 13 (𝑘𝐶 → (∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖) → ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)))
3029adantr 484 . . . . . . . . . . . 12 ((𝑘𝐶𝑥𝑘) → (∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖) → ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)))
3130ad2antlr 726 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) → (∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖) → ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)))
3231imp 410 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖)) → ∀𝑗𝐶 (𝑘𝑗𝑗𝑘))
33 eluni2 4805 . . . . . . . . . . . 12 (𝑦 𝐶 ↔ ∃𝑖𝐶 𝑦𝑖)
34 sseq2 3941 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → (𝑘𝑗𝑘𝑖))
35 sseq1 3940 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → (𝑗𝑘𝑖𝑘))
3634, 35orbi12d 916 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → ((𝑘𝑗𝑗𝑘) ↔ (𝑘𝑖𝑖𝑘)))
3736rspcv 3566 . . . . . . . . . . . . . . . . 17 (𝑖𝐶 → (∀𝑗𝐶 (𝑘𝑗𝑗𝑘) → (𝑘𝑖𝑖𝑘)))
3837ad2antrl 727 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) → (∀𝑗𝐶 (𝑘𝑗𝑗𝑘) → (𝑘𝑖𝑖𝑘)))
3938imp 410 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → (𝑘𝑖𝑖𝑘))
40 ssel2 3910 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘𝑖𝑥𝑘) → 𝑥𝑖)
4140ancoms 462 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝑘𝑘𝑖) → 𝑥𝑖)
4241adantll 713 . . . . . . . . . . . . . . . . . . . . 21 (((𝑘𝐶𝑥𝑘) ∧ 𝑘𝑖) → 𝑥𝑖)
43 ssel2 3910 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶) → 𝑖 ∈ (Idl‘𝑅))
442idladdcl 35476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑥𝑖𝑦𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝑖)
4544ancom2s 649 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑦𝑖𝑥𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝑖)
4645expr 460 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑦𝑖) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
4746an32s 651 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ∈ RingOps ∧ 𝑦𝑖) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
4843, 47sylan2 595 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅 ∈ RingOps ∧ 𝑦𝑖) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑖𝐶)) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
4948an42s 660 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
5049anasss 470 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) → (𝑥𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝑖))
5150imp 410 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ 𝑥𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝑖)
52 simprl 770 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖)) → 𝑖𝐶)
5352ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ 𝑥𝑖) → 𝑖𝐶)
54 elunii 4806 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥(1st𝑅)𝑦) ∈ 𝑖𝑖𝐶) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
5551, 53, 54syl2anc 587 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ 𝑥𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
5642, 55sylan2 595 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ ((𝑘𝐶𝑥𝑘) ∧ 𝑘𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
5756expr 460 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) ∧ (𝑘𝐶𝑥𝑘)) → (𝑘𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
5857an32s 651 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ (𝑖𝐶𝑦𝑖))) → (𝑘𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
5958anassrs 471 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) → (𝑘𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
6059imp 410 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ 𝑘𝑖) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
61 ssel2 3910 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑘𝑦𝑖) → 𝑦𝑘)
6261ancoms 462 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑖𝑖𝑘) → 𝑦𝑘)
6362adantll 713 . . . . . . . . . . . . . . . . . 18 (((𝑖𝐶𝑦𝑖) ∧ 𝑖𝑘) → 𝑦𝑘)
64 ssel2 3910 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶) → 𝑘 ∈ (Idl‘𝑅))
652idladdcl 35476 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ (𝑥𝑘𝑦𝑘)) → (𝑥(1st𝑅)𝑦) ∈ 𝑘)
6665expr 460 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ 𝑥𝑘) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
6766an32s 651 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ 𝑘 ∈ (Idl‘𝑅)) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
6864, 67sylan2 595 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
6968an42s 660 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑘𝐶𝑥𝑘)) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
7069an32s 651 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) → (𝑦𝑘 → (𝑥(1st𝑅)𝑦) ∈ 𝑘))
7170imp 410 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑦𝑘) → (𝑥(1st𝑅)𝑦) ∈ 𝑘)
72 simprl 770 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) → 𝑘𝐶)
7372ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑦𝑘) → 𝑘𝐶)
74 elunii 4806 . . . . . . . . . . . . . . . . . . 19 (((𝑥(1st𝑅)𝑦) ∈ 𝑘𝑘𝐶) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7571, 73, 74syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ 𝑦𝑘) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7663, 75sylan2 595 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ((𝑖𝐶𝑦𝑖) ∧ 𝑖𝑘)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7776anassrs 471 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ 𝑖𝑘) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7860, 77jaodan 955 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ (𝑘𝑖𝑖𝑘)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
7939, 78syldan 594 . . . . . . . . . . . . . 14 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑖𝐶𝑦𝑖)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
8079an32s 651 . . . . . . . . . . . . 13 (((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) ∧ (𝑖𝐶𝑦𝑖)) → (𝑥(1st𝑅)𝑦) ∈ 𝐶)
8180rexlimdvaa 3244 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → (∃𝑖𝐶 𝑦𝑖 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
8233, 81syl5bi 245 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → (𝑦 𝐶 → (𝑥(1st𝑅)𝑦) ∈ 𝐶))
8382ralrimiv 3148 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑗𝐶 (𝑘𝑗𝑗𝑘)) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
8432, 83syldan 594 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖)) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
8584anasss 470 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
86853adantr1 1166 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
8786an32s 651 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) ∧ (𝑘𝐶𝑥𝑘)) → ∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶)
88 eqid 2798 . . . . . . . . . . . . . . . . . 18 (2nd𝑅) = (2nd𝑅)
892, 88, 3idllmulcl 35477 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ (𝑥𝑘𝑧 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘)
9089exp43 440 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → (𝑘 ∈ (Idl‘𝑅) → (𝑥𝑘 → (𝑧 ∈ ran (1st𝑅) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘))))
9190com23 86 . . . . . . . . . . . . . . 15 (𝑅 ∈ RingOps → (𝑥𝑘 → (𝑘 ∈ (Idl‘𝑅) → (𝑧 ∈ ran (1st𝑅) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘))))
9291imp41 429 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘)
9364, 92sylanl2 680 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ 𝑘)
94 simplrr 777 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → 𝑘𝐶)
95 elunii 4806 . . . . . . . . . . . . 13 (((𝑧(2nd𝑅)𝑥) ∈ 𝑘𝑘𝐶) → (𝑧(2nd𝑅)𝑥) ∈ 𝐶)
9693, 94, 95syl2anc 587 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ 𝐶)
972, 88, 3idlrmulcl 35478 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ (𝑥𝑘𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘)
9897exp43 440 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → (𝑘 ∈ (Idl‘𝑅) → (𝑥𝑘 → (𝑧 ∈ ran (1st𝑅) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘))))
9998com23 86 . . . . . . . . . . . . . . 15 (𝑅 ∈ RingOps → (𝑥𝑘 → (𝑘 ∈ (Idl‘𝑅) → (𝑧 ∈ ran (1st𝑅) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘))))
10099imp41 429 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ 𝑘 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘)
10164, 100sylanl2 680 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ 𝑘)
102 elunii 4806 . . . . . . . . . . . . 13 (((𝑥(2nd𝑅)𝑧) ∈ 𝑘𝑘𝐶) → (𝑥(2nd𝑅)𝑧) ∈ 𝐶)
103101, 94, 102syl2anc 587 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ 𝐶)
10496, 103jca 515 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
105104ralrimiva 3149 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑥𝑘) ∧ (𝐶 ⊆ (Idl‘𝑅) ∧ 𝑘𝐶)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
106105an42s 660 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝐶 ⊆ (Idl‘𝑅)) ∧ (𝑘𝐶𝑥𝑘)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
107106an32s 651 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
1081073ad2antr2 1186 . . . . . . 7 (((𝑅 ∈ RingOps ∧ (𝑘𝐶𝑥𝑘)) ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
109108an32s 651 . . . . . 6 (((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) ∧ (𝑘𝐶𝑥𝑘)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))
11087, 109jca 515 . . . . 5 (((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) ∧ (𝑘𝐶𝑥𝑘)) → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
111110rexlimdvaa 3244 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → (∃𝑘𝐶 𝑥𝑘 → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))))
11224, 111syl5bi 245 . . 3 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → (𝑥 𝐶 → (∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶))))
113112ralrimiv 3148 . 2 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))
1142, 88, 3, 12isidl 35471 . . 3 (𝑅 ∈ RingOps → ( 𝐶 ∈ (Idl‘𝑅) ↔ ( 𝐶 ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ 𝐶 ∧ ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))))
115114adantr 484 . 2 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → ( 𝐶 ∈ (Idl‘𝑅) ↔ ( 𝐶 ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ 𝐶 ∧ ∀𝑥 𝐶(∀𝑦 𝐶(𝑥(1st𝑅)𝑦) ∈ 𝐶 ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ 𝐶 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐶)))))
11611, 23, 113, 115mpbir3and 1339 1 ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖𝐶𝑗𝐶 (𝑖𝑗𝑗𝑖))) → 𝐶 ∈ (Idl‘𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107   ⊆ wss 3881  ∅c0 4243  ∪ cuni 4801  ran crn 5521  ‘cfv 6325  (class class class)co 7136  1st c1st 7672  2nd c2nd 7673  GIdcgi 28283  RingOpscrngo 35351  Idlcidl 35464 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-iota 6284  df-fun 6327  df-fv 6333  df-ov 7139  df-idl 35467 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator