MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdistr Structured version   Visualization version   GIF version

Theorem axdistr 10845
Description: Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 10869 be used later. Instead, use adddi 10891. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axdistr ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))

Proof of Theorem axdistr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 10829 . 2 ℂ = ((R × R) / E )
2 addcnsrec 10830 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ([⟨𝑧, 𝑤⟩] E + [⟨𝑣, 𝑢⟩] E ) = [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E )
3 mulcnsrec 10831 . 2 (((𝑥R𝑦R) ∧ ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) → ([⟨𝑥, 𝑦⟩] E · [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E ) = [⟨((𝑥 ·R (𝑧 +R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 +R 𝑢)))), ((𝑦 ·R (𝑧 +R 𝑣)) +R (𝑥 ·R (𝑤 +R 𝑢)))⟩] E )
4 mulcnsrec 10831 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑧, 𝑤⟩] E ) = [⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E )
5 mulcnsrec 10831 . 2 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑣, 𝑢⟩] E ) = [⟨((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))), ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢))⟩] E )
6 addcnsrec 10830 . 2 (((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R) ∧ (((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R ∧ ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)) → ([⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E + [⟨((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))), ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢))⟩] E ) = [⟨(((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) +R ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢)))), (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) +R ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)))⟩] E )
7 addclsr 10770 . . . 4 ((𝑧R𝑣R) → (𝑧 +R 𝑣) ∈ R)
8 addclsr 10770 . . . 4 ((𝑤R𝑢R) → (𝑤 +R 𝑢) ∈ R)
97, 8anim12i 612 . . 3 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
109an4s 656 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
11 mulclsr 10771 . . . . 5 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) ∈ R)
12 m1r 10769 . . . . . 6 -1RR
13 mulclsr 10771 . . . . . 6 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) ∈ R)
14 mulclsr 10771 . . . . . 6 ((-1RR ∧ (𝑦 ·R 𝑤) ∈ R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
1512, 13, 14sylancr 586 . . . . 5 ((𝑦R𝑤R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
16 addclsr 10770 . . . . 5 (((𝑥 ·R 𝑧) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑤)) ∈ R) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
1711, 15, 16syl2an 595 . . . 4 (((𝑥R𝑧R) ∧ (𝑦R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
1817an4s 656 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
19 mulclsr 10771 . . . . 5 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) ∈ R)
20 mulclsr 10771 . . . . 5 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) ∈ R)
21 addclsr 10770 . . . . 5 (((𝑦 ·R 𝑧) ∈ R ∧ (𝑥 ·R 𝑤) ∈ R) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
2219, 20, 21syl2anr 596 . . . 4 (((𝑥R𝑤R) ∧ (𝑦R𝑧R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
2322an42s 657 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
2418, 23jca 511 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R))
25 mulclsr 10771 . . . . 5 ((𝑥R𝑣R) → (𝑥 ·R 𝑣) ∈ R)
26 mulclsr 10771 . . . . . 6 ((𝑦R𝑢R) → (𝑦 ·R 𝑢) ∈ R)
27 mulclsr 10771 . . . . . 6 ((-1RR ∧ (𝑦 ·R 𝑢) ∈ R) → (-1R ·R (𝑦 ·R 𝑢)) ∈ R)
2812, 26, 27sylancr 586 . . . . 5 ((𝑦R𝑢R) → (-1R ·R (𝑦 ·R 𝑢)) ∈ R)
29 addclsr 10770 . . . . 5 (((𝑥 ·R 𝑣) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑢)) ∈ R) → ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R)
3025, 28, 29syl2an 595 . . . 4 (((𝑥R𝑣R) ∧ (𝑦R𝑢R)) → ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R)
3130an4s 656 . . 3 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R)
32 mulclsr 10771 . . . . 5 ((𝑦R𝑣R) → (𝑦 ·R 𝑣) ∈ R)
33 mulclsr 10771 . . . . 5 ((𝑥R𝑢R) → (𝑥 ·R 𝑢) ∈ R)
34 addclsr 10770 . . . . 5 (((𝑦 ·R 𝑣) ∈ R ∧ (𝑥 ·R 𝑢) ∈ R) → ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)
3532, 33, 34syl2anr 596 . . . 4 (((𝑥R𝑢R) ∧ (𝑦R𝑣R)) → ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)
3635an42s 657 . . 3 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)
3731, 36jca 511 . 2 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → (((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R ∧ ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R))
38 distrsr 10778 . . . 4 (𝑥 ·R (𝑧 +R 𝑣)) = ((𝑥 ·R 𝑧) +R (𝑥 ·R 𝑣))
39 distrsr 10778 . . . . . 6 (𝑦 ·R (𝑤 +R 𝑢)) = ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢))
4039oveq2i 7266 . . . . 5 (-1R ·R (𝑦 ·R (𝑤 +R 𝑢))) = (-1R ·R ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢)))
41 distrsr 10778 . . . . 5 (-1R ·R ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢))) = ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢)))
4240, 41eqtri 2766 . . . 4 (-1R ·R (𝑦 ·R (𝑤 +R 𝑢))) = ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢)))
4338, 42oveq12i 7267 . . 3 ((𝑥 ·R (𝑧 +R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 +R 𝑢)))) = (((𝑥 ·R 𝑧) +R (𝑥 ·R 𝑣)) +R ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢))))
44 ovex 7288 . . . 4 (𝑥 ·R 𝑧) ∈ V
45 ovex 7288 . . . 4 (𝑥 ·R 𝑣) ∈ V
46 ovex 7288 . . . 4 (-1R ·R (𝑦 ·R 𝑤)) ∈ V
47 addcomsr 10774 . . . 4 (𝑓 +R 𝑔) = (𝑔 +R 𝑓)
48 addasssr 10775 . . . 4 ((𝑓 +R 𝑔) +R ) = (𝑓 +R (𝑔 +R ))
49 ovex 7288 . . . 4 (-1R ·R (𝑦 ·R 𝑢)) ∈ V
5044, 45, 46, 47, 48, 49caov4 7481 . . 3 (((𝑥 ·R 𝑧) +R (𝑥 ·R 𝑣)) +R ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢)))) = (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) +R ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))))
5143, 50eqtri 2766 . 2 ((𝑥 ·R (𝑧 +R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 +R 𝑢)))) = (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) +R ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))))
52 distrsr 10778 . . . 4 (𝑦 ·R (𝑧 +R 𝑣)) = ((𝑦 ·R 𝑧) +R (𝑦 ·R 𝑣))
53 distrsr 10778 . . . 4 (𝑥 ·R (𝑤 +R 𝑢)) = ((𝑥 ·R 𝑤) +R (𝑥 ·R 𝑢))
5452, 53oveq12i 7267 . . 3 ((𝑦 ·R (𝑧 +R 𝑣)) +R (𝑥 ·R (𝑤 +R 𝑢))) = (((𝑦 ·R 𝑧) +R (𝑦 ·R 𝑣)) +R ((𝑥 ·R 𝑤) +R (𝑥 ·R 𝑢)))
55 ovex 7288 . . . 4 (𝑦 ·R 𝑧) ∈ V
56 ovex 7288 . . . 4 (𝑦 ·R 𝑣) ∈ V
57 ovex 7288 . . . 4 (𝑥 ·R 𝑤) ∈ V
58 ovex 7288 . . . 4 (𝑥 ·R 𝑢) ∈ V
5955, 56, 57, 47, 48, 58caov4 7481 . . 3 (((𝑦 ·R 𝑧) +R (𝑦 ·R 𝑣)) +R ((𝑥 ·R 𝑤) +R (𝑥 ·R 𝑢))) = (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) +R ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)))
6054, 59eqtri 2766 . 2 ((𝑦 ·R (𝑧 +R 𝑣)) +R (𝑥 ·R (𝑤 +R 𝑢))) = (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) +R ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)))
611, 2, 3, 4, 5, 6, 10, 24, 37, 51, 60ecovdi 8572 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108   E cep 5485  ccnv 5579  (class class class)co 7255  Rcnr 10552  -1Rcm1r 10555   +R cplr 10556   ·R cmr 10557  cc 10800   + caddc 10805   · cmul 10807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-ni 10559  df-pli 10560  df-mi 10561  df-lti 10562  df-plpq 10595  df-mpq 10596  df-ltpq 10597  df-enq 10598  df-nq 10599  df-erq 10600  df-plq 10601  df-mq 10602  df-1nq 10603  df-rq 10604  df-ltnq 10605  df-np 10668  df-1p 10669  df-plp 10670  df-mp 10671  df-ltp 10672  df-enr 10742  df-nr 10743  df-plr 10744  df-mr 10745  df-m1r 10749  df-c 10808  df-add 10813  df-mul 10814
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator