MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdistr Structured version   Visualization version   GIF version

Theorem axdistr 11227
Description: Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 11251 be used later. Instead, use adddi 11273. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axdistr ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))

Proof of Theorem axdistr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 11211 . 2 ℂ = ((R × R) / E )
2 addcnsrec 11212 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ([⟨𝑧, 𝑤⟩] E + [⟨𝑣, 𝑢⟩] E ) = [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E )
3 mulcnsrec 11213 . 2 (((𝑥R𝑦R) ∧ ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) → ([⟨𝑥, 𝑦⟩] E · [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E ) = [⟨((𝑥 ·R (𝑧 +R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 +R 𝑢)))), ((𝑦 ·R (𝑧 +R 𝑣)) +R (𝑥 ·R (𝑤 +R 𝑢)))⟩] E )
4 mulcnsrec 11213 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑧, 𝑤⟩] E ) = [⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E )
5 mulcnsrec 11213 . 2 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑣, 𝑢⟩] E ) = [⟨((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))), ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢))⟩] E )
6 addcnsrec 11212 . 2 (((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R) ∧ (((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R ∧ ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)) → ([⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E + [⟨((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))), ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢))⟩] E ) = [⟨(((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) +R ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢)))), (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) +R ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)))⟩] E )
7 addclsr 11152 . . . 4 ((𝑧R𝑣R) → (𝑧 +R 𝑣) ∈ R)
8 addclsr 11152 . . . 4 ((𝑤R𝑢R) → (𝑤 +R 𝑢) ∈ R)
97, 8anim12i 612 . . 3 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
109an4s 659 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
11 mulclsr 11153 . . . . 5 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) ∈ R)
12 m1r 11151 . . . . . 6 -1RR
13 mulclsr 11153 . . . . . 6 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) ∈ R)
14 mulclsr 11153 . . . . . 6 ((-1RR ∧ (𝑦 ·R 𝑤) ∈ R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
1512, 13, 14sylancr 586 . . . . 5 ((𝑦R𝑤R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
16 addclsr 11152 . . . . 5 (((𝑥 ·R 𝑧) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑤)) ∈ R) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
1711, 15, 16syl2an 595 . . . 4 (((𝑥R𝑧R) ∧ (𝑦R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
1817an4s 659 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
19 mulclsr 11153 . . . . 5 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) ∈ R)
20 mulclsr 11153 . . . . 5 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) ∈ R)
21 addclsr 11152 . . . . 5 (((𝑦 ·R 𝑧) ∈ R ∧ (𝑥 ·R 𝑤) ∈ R) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
2219, 20, 21syl2anr 596 . . . 4 (((𝑥R𝑤R) ∧ (𝑦R𝑧R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
2322an42s 660 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
2418, 23jca 511 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R))
25 mulclsr 11153 . . . . 5 ((𝑥R𝑣R) → (𝑥 ·R 𝑣) ∈ R)
26 mulclsr 11153 . . . . . 6 ((𝑦R𝑢R) → (𝑦 ·R 𝑢) ∈ R)
27 mulclsr 11153 . . . . . 6 ((-1RR ∧ (𝑦 ·R 𝑢) ∈ R) → (-1R ·R (𝑦 ·R 𝑢)) ∈ R)
2812, 26, 27sylancr 586 . . . . 5 ((𝑦R𝑢R) → (-1R ·R (𝑦 ·R 𝑢)) ∈ R)
29 addclsr 11152 . . . . 5 (((𝑥 ·R 𝑣) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑢)) ∈ R) → ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R)
3025, 28, 29syl2an 595 . . . 4 (((𝑥R𝑣R) ∧ (𝑦R𝑢R)) → ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R)
3130an4s 659 . . 3 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R)
32 mulclsr 11153 . . . . 5 ((𝑦R𝑣R) → (𝑦 ·R 𝑣) ∈ R)
33 mulclsr 11153 . . . . 5 ((𝑥R𝑢R) → (𝑥 ·R 𝑢) ∈ R)
34 addclsr 11152 . . . . 5 (((𝑦 ·R 𝑣) ∈ R ∧ (𝑥 ·R 𝑢) ∈ R) → ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)
3532, 33, 34syl2anr 596 . . . 4 (((𝑥R𝑢R) ∧ (𝑦R𝑣R)) → ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)
3635an42s 660 . . 3 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)
3731, 36jca 511 . 2 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → (((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R ∧ ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R))
38 distrsr 11160 . . . 4 (𝑥 ·R (𝑧 +R 𝑣)) = ((𝑥 ·R 𝑧) +R (𝑥 ·R 𝑣))
39 distrsr 11160 . . . . . 6 (𝑦 ·R (𝑤 +R 𝑢)) = ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢))
4039oveq2i 7459 . . . . 5 (-1R ·R (𝑦 ·R (𝑤 +R 𝑢))) = (-1R ·R ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢)))
41 distrsr 11160 . . . . 5 (-1R ·R ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢))) = ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢)))
4240, 41eqtri 2768 . . . 4 (-1R ·R (𝑦 ·R (𝑤 +R 𝑢))) = ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢)))
4338, 42oveq12i 7460 . . 3 ((𝑥 ·R (𝑧 +R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 +R 𝑢)))) = (((𝑥 ·R 𝑧) +R (𝑥 ·R 𝑣)) +R ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢))))
44 ovex 7481 . . . 4 (𝑥 ·R 𝑧) ∈ V
45 ovex 7481 . . . 4 (𝑥 ·R 𝑣) ∈ V
46 ovex 7481 . . . 4 (-1R ·R (𝑦 ·R 𝑤)) ∈ V
47 addcomsr 11156 . . . 4 (𝑓 +R 𝑔) = (𝑔 +R 𝑓)
48 addasssr 11157 . . . 4 ((𝑓 +R 𝑔) +R ) = (𝑓 +R (𝑔 +R ))
49 ovex 7481 . . . 4 (-1R ·R (𝑦 ·R 𝑢)) ∈ V
5044, 45, 46, 47, 48, 49caov4 7681 . . 3 (((𝑥 ·R 𝑧) +R (𝑥 ·R 𝑣)) +R ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢)))) = (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) +R ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))))
5143, 50eqtri 2768 . 2 ((𝑥 ·R (𝑧 +R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 +R 𝑢)))) = (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) +R ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))))
52 distrsr 11160 . . . 4 (𝑦 ·R (𝑧 +R 𝑣)) = ((𝑦 ·R 𝑧) +R (𝑦 ·R 𝑣))
53 distrsr 11160 . . . 4 (𝑥 ·R (𝑤 +R 𝑢)) = ((𝑥 ·R 𝑤) +R (𝑥 ·R 𝑢))
5452, 53oveq12i 7460 . . 3 ((𝑦 ·R (𝑧 +R 𝑣)) +R (𝑥 ·R (𝑤 +R 𝑢))) = (((𝑦 ·R 𝑧) +R (𝑦 ·R 𝑣)) +R ((𝑥 ·R 𝑤) +R (𝑥 ·R 𝑢)))
55 ovex 7481 . . . 4 (𝑦 ·R 𝑧) ∈ V
56 ovex 7481 . . . 4 (𝑦 ·R 𝑣) ∈ V
57 ovex 7481 . . . 4 (𝑥 ·R 𝑤) ∈ V
58 ovex 7481 . . . 4 (𝑥 ·R 𝑢) ∈ V
5955, 56, 57, 47, 48, 58caov4 7681 . . 3 (((𝑦 ·R 𝑧) +R (𝑦 ·R 𝑣)) +R ((𝑥 ·R 𝑤) +R (𝑥 ·R 𝑢))) = (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) +R ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)))
6054, 59eqtri 2768 . 2 ((𝑦 ·R (𝑧 +R 𝑣)) +R (𝑥 ·R (𝑤 +R 𝑢))) = (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) +R ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)))
611, 2, 3, 4, 5, 6, 10, 24, 37, 51, 60ecovdi 8883 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108   E cep 5598  ccnv 5699  (class class class)co 7448  Rcnr 10934  -1Rcm1r 10937   +R cplr 10938   ·R cmr 10939  cc 11182   + caddc 11187   · cmul 11189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-ni 10941  df-pli 10942  df-mi 10943  df-lti 10944  df-plpq 10977  df-mpq 10978  df-ltpq 10979  df-enq 10980  df-nq 10981  df-erq 10982  df-plq 10983  df-mq 10984  df-1nq 10985  df-rq 10986  df-ltnq 10987  df-np 11050  df-1p 11051  df-plp 11052  df-mp 11053  df-ltp 11054  df-enr 11124  df-nr 11125  df-plr 11126  df-mr 11127  df-m1r 11131  df-c 11190  df-add 11195  df-mul 11196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator