MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdistr Structured version   Visualization version   GIF version

Theorem axdistr 10772
Description: Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 10796 be used later. Instead, use adddi 10818. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axdistr ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))

Proof of Theorem axdistr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 10756 . 2 ℂ = ((R × R) / E )
2 addcnsrec 10757 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ([⟨𝑧, 𝑤⟩] E + [⟨𝑣, 𝑢⟩] E ) = [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E )
3 mulcnsrec 10758 . 2 (((𝑥R𝑦R) ∧ ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) → ([⟨𝑥, 𝑦⟩] E · [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E ) = [⟨((𝑥 ·R (𝑧 +R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 +R 𝑢)))), ((𝑦 ·R (𝑧 +R 𝑣)) +R (𝑥 ·R (𝑤 +R 𝑢)))⟩] E )
4 mulcnsrec 10758 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑧, 𝑤⟩] E ) = [⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E )
5 mulcnsrec 10758 . 2 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑣, 𝑢⟩] E ) = [⟨((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))), ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢))⟩] E )
6 addcnsrec 10757 . 2 (((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R) ∧ (((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R ∧ ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)) → ([⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E + [⟨((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))), ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢))⟩] E ) = [⟨(((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) +R ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢)))), (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) +R ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)))⟩] E )
7 addclsr 10697 . . . 4 ((𝑧R𝑣R) → (𝑧 +R 𝑣) ∈ R)
8 addclsr 10697 . . . 4 ((𝑤R𝑢R) → (𝑤 +R 𝑢) ∈ R)
97, 8anim12i 616 . . 3 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
109an4s 660 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
11 mulclsr 10698 . . . . 5 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) ∈ R)
12 m1r 10696 . . . . . 6 -1RR
13 mulclsr 10698 . . . . . 6 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) ∈ R)
14 mulclsr 10698 . . . . . 6 ((-1RR ∧ (𝑦 ·R 𝑤) ∈ R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
1512, 13, 14sylancr 590 . . . . 5 ((𝑦R𝑤R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
16 addclsr 10697 . . . . 5 (((𝑥 ·R 𝑧) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑤)) ∈ R) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
1711, 15, 16syl2an 599 . . . 4 (((𝑥R𝑧R) ∧ (𝑦R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
1817an4s 660 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
19 mulclsr 10698 . . . . 5 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) ∈ R)
20 mulclsr 10698 . . . . 5 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) ∈ R)
21 addclsr 10697 . . . . 5 (((𝑦 ·R 𝑧) ∈ R ∧ (𝑥 ·R 𝑤) ∈ R) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
2219, 20, 21syl2anr 600 . . . 4 (((𝑥R𝑤R) ∧ (𝑦R𝑧R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
2322an42s 661 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
2418, 23jca 515 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R))
25 mulclsr 10698 . . . . 5 ((𝑥R𝑣R) → (𝑥 ·R 𝑣) ∈ R)
26 mulclsr 10698 . . . . . 6 ((𝑦R𝑢R) → (𝑦 ·R 𝑢) ∈ R)
27 mulclsr 10698 . . . . . 6 ((-1RR ∧ (𝑦 ·R 𝑢) ∈ R) → (-1R ·R (𝑦 ·R 𝑢)) ∈ R)
2812, 26, 27sylancr 590 . . . . 5 ((𝑦R𝑢R) → (-1R ·R (𝑦 ·R 𝑢)) ∈ R)
29 addclsr 10697 . . . . 5 (((𝑥 ·R 𝑣) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑢)) ∈ R) → ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R)
3025, 28, 29syl2an 599 . . . 4 (((𝑥R𝑣R) ∧ (𝑦R𝑢R)) → ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R)
3130an4s 660 . . 3 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R)
32 mulclsr 10698 . . . . 5 ((𝑦R𝑣R) → (𝑦 ·R 𝑣) ∈ R)
33 mulclsr 10698 . . . . 5 ((𝑥R𝑢R) → (𝑥 ·R 𝑢) ∈ R)
34 addclsr 10697 . . . . 5 (((𝑦 ·R 𝑣) ∈ R ∧ (𝑥 ·R 𝑢) ∈ R) → ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)
3532, 33, 34syl2anr 600 . . . 4 (((𝑥R𝑢R) ∧ (𝑦R𝑣R)) → ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)
3635an42s 661 . . 3 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)
3731, 36jca 515 . 2 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → (((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R ∧ ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R))
38 distrsr 10705 . . . 4 (𝑥 ·R (𝑧 +R 𝑣)) = ((𝑥 ·R 𝑧) +R (𝑥 ·R 𝑣))
39 distrsr 10705 . . . . . 6 (𝑦 ·R (𝑤 +R 𝑢)) = ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢))
4039oveq2i 7224 . . . . 5 (-1R ·R (𝑦 ·R (𝑤 +R 𝑢))) = (-1R ·R ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢)))
41 distrsr 10705 . . . . 5 (-1R ·R ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢))) = ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢)))
4240, 41eqtri 2765 . . . 4 (-1R ·R (𝑦 ·R (𝑤 +R 𝑢))) = ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢)))
4338, 42oveq12i 7225 . . 3 ((𝑥 ·R (𝑧 +R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 +R 𝑢)))) = (((𝑥 ·R 𝑧) +R (𝑥 ·R 𝑣)) +R ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢))))
44 ovex 7246 . . . 4 (𝑥 ·R 𝑧) ∈ V
45 ovex 7246 . . . 4 (𝑥 ·R 𝑣) ∈ V
46 ovex 7246 . . . 4 (-1R ·R (𝑦 ·R 𝑤)) ∈ V
47 addcomsr 10701 . . . 4 (𝑓 +R 𝑔) = (𝑔 +R 𝑓)
48 addasssr 10702 . . . 4 ((𝑓 +R 𝑔) +R ) = (𝑓 +R (𝑔 +R ))
49 ovex 7246 . . . 4 (-1R ·R (𝑦 ·R 𝑢)) ∈ V
5044, 45, 46, 47, 48, 49caov4 7439 . . 3 (((𝑥 ·R 𝑧) +R (𝑥 ·R 𝑣)) +R ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢)))) = (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) +R ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))))
5143, 50eqtri 2765 . 2 ((𝑥 ·R (𝑧 +R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 +R 𝑢)))) = (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) +R ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))))
52 distrsr 10705 . . . 4 (𝑦 ·R (𝑧 +R 𝑣)) = ((𝑦 ·R 𝑧) +R (𝑦 ·R 𝑣))
53 distrsr 10705 . . . 4 (𝑥 ·R (𝑤 +R 𝑢)) = ((𝑥 ·R 𝑤) +R (𝑥 ·R 𝑢))
5452, 53oveq12i 7225 . . 3 ((𝑦 ·R (𝑧 +R 𝑣)) +R (𝑥 ·R (𝑤 +R 𝑢))) = (((𝑦 ·R 𝑧) +R (𝑦 ·R 𝑣)) +R ((𝑥 ·R 𝑤) +R (𝑥 ·R 𝑢)))
55 ovex 7246 . . . 4 (𝑦 ·R 𝑧) ∈ V
56 ovex 7246 . . . 4 (𝑦 ·R 𝑣) ∈ V
57 ovex 7246 . . . 4 (𝑥 ·R 𝑤) ∈ V
58 ovex 7246 . . . 4 (𝑥 ·R 𝑢) ∈ V
5955, 56, 57, 47, 48, 58caov4 7439 . . 3 (((𝑦 ·R 𝑧) +R (𝑦 ·R 𝑣)) +R ((𝑥 ·R 𝑤) +R (𝑥 ·R 𝑢))) = (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) +R ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)))
6054, 59eqtri 2765 . 2 ((𝑦 ·R (𝑧 +R 𝑣)) +R (𝑥 ·R (𝑤 +R 𝑢))) = (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) +R ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)))
611, 2, 3, 4, 5, 6, 10, 24, 37, 51, 60ecovdi 8507 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110   E cep 5459  ccnv 5550  (class class class)co 7213  Rcnr 10479  -1Rcm1r 10482   +R cplr 10483   ·R cmr 10484  cc 10727   + caddc 10732   · cmul 10734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-omul 8207  df-er 8391  df-ec 8393  df-qs 8397  df-ni 10486  df-pli 10487  df-mi 10488  df-lti 10489  df-plpq 10522  df-mpq 10523  df-ltpq 10524  df-enq 10525  df-nq 10526  df-erq 10527  df-plq 10528  df-mq 10529  df-1nq 10530  df-rq 10531  df-ltnq 10532  df-np 10595  df-1p 10596  df-plp 10597  df-mp 10598  df-ltp 10599  df-enr 10669  df-nr 10670  df-plr 10671  df-mr 10672  df-m1r 10676  df-c 10735  df-add 10740  df-mul 10741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator