MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdistr Structured version   Visualization version   GIF version

Theorem axdistr 10583
Description: Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 10607 be used later. Instead, use adddi 10629. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axdistr ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))

Proof of Theorem axdistr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 10567 . 2 ℂ = ((R × R) / E )
2 addcnsrec 10568 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ([⟨𝑧, 𝑤⟩] E + [⟨𝑣, 𝑢⟩] E ) = [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E )
3 mulcnsrec 10569 . 2 (((𝑥R𝑦R) ∧ ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) → ([⟨𝑥, 𝑦⟩] E · [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E ) = [⟨((𝑥 ·R (𝑧 +R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 +R 𝑢)))), ((𝑦 ·R (𝑧 +R 𝑣)) +R (𝑥 ·R (𝑤 +R 𝑢)))⟩] E )
4 mulcnsrec 10569 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑧, 𝑤⟩] E ) = [⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E )
5 mulcnsrec 10569 . 2 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑣, 𝑢⟩] E ) = [⟨((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))), ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢))⟩] E )
6 addcnsrec 10568 . 2 (((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R) ∧ (((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R ∧ ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)) → ([⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E + [⟨((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))), ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢))⟩] E ) = [⟨(((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) +R ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢)))), (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) +R ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)))⟩] E )
7 addclsr 10508 . . . 4 ((𝑧R𝑣R) → (𝑧 +R 𝑣) ∈ R)
8 addclsr 10508 . . . 4 ((𝑤R𝑢R) → (𝑤 +R 𝑢) ∈ R)
97, 8anim12i 614 . . 3 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
109an4s 658 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
11 mulclsr 10509 . . . . 5 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) ∈ R)
12 m1r 10507 . . . . . 6 -1RR
13 mulclsr 10509 . . . . . 6 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) ∈ R)
14 mulclsr 10509 . . . . . 6 ((-1RR ∧ (𝑦 ·R 𝑤) ∈ R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
1512, 13, 14sylancr 589 . . . . 5 ((𝑦R𝑤R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
16 addclsr 10508 . . . . 5 (((𝑥 ·R 𝑧) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑤)) ∈ R) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
1711, 15, 16syl2an 597 . . . 4 (((𝑥R𝑧R) ∧ (𝑦R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
1817an4s 658 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
19 mulclsr 10509 . . . . 5 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) ∈ R)
20 mulclsr 10509 . . . . 5 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) ∈ R)
21 addclsr 10508 . . . . 5 (((𝑦 ·R 𝑧) ∈ R ∧ (𝑥 ·R 𝑤) ∈ R) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
2219, 20, 21syl2anr 598 . . . 4 (((𝑥R𝑤R) ∧ (𝑦R𝑧R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
2322an42s 659 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
2418, 23jca 514 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R))
25 mulclsr 10509 . . . . 5 ((𝑥R𝑣R) → (𝑥 ·R 𝑣) ∈ R)
26 mulclsr 10509 . . . . . 6 ((𝑦R𝑢R) → (𝑦 ·R 𝑢) ∈ R)
27 mulclsr 10509 . . . . . 6 ((-1RR ∧ (𝑦 ·R 𝑢) ∈ R) → (-1R ·R (𝑦 ·R 𝑢)) ∈ R)
2812, 26, 27sylancr 589 . . . . 5 ((𝑦R𝑢R) → (-1R ·R (𝑦 ·R 𝑢)) ∈ R)
29 addclsr 10508 . . . . 5 (((𝑥 ·R 𝑣) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑢)) ∈ R) → ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R)
3025, 28, 29syl2an 597 . . . 4 (((𝑥R𝑣R) ∧ (𝑦R𝑢R)) → ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R)
3130an4s 658 . . 3 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R)
32 mulclsr 10509 . . . . 5 ((𝑦R𝑣R) → (𝑦 ·R 𝑣) ∈ R)
33 mulclsr 10509 . . . . 5 ((𝑥R𝑢R) → (𝑥 ·R 𝑢) ∈ R)
34 addclsr 10508 . . . . 5 (((𝑦 ·R 𝑣) ∈ R ∧ (𝑥 ·R 𝑢) ∈ R) → ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)
3532, 33, 34syl2anr 598 . . . 4 (((𝑥R𝑢R) ∧ (𝑦R𝑣R)) → ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)
3635an42s 659 . . 3 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)
3731, 36jca 514 . 2 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → (((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R ∧ ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R))
38 distrsr 10516 . . . 4 (𝑥 ·R (𝑧 +R 𝑣)) = ((𝑥 ·R 𝑧) +R (𝑥 ·R 𝑣))
39 distrsr 10516 . . . . . 6 (𝑦 ·R (𝑤 +R 𝑢)) = ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢))
4039oveq2i 7170 . . . . 5 (-1R ·R (𝑦 ·R (𝑤 +R 𝑢))) = (-1R ·R ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢)))
41 distrsr 10516 . . . . 5 (-1R ·R ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢))) = ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢)))
4240, 41eqtri 2847 . . . 4 (-1R ·R (𝑦 ·R (𝑤 +R 𝑢))) = ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢)))
4338, 42oveq12i 7171 . . 3 ((𝑥 ·R (𝑧 +R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 +R 𝑢)))) = (((𝑥 ·R 𝑧) +R (𝑥 ·R 𝑣)) +R ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢))))
44 ovex 7192 . . . 4 (𝑥 ·R 𝑧) ∈ V
45 ovex 7192 . . . 4 (𝑥 ·R 𝑣) ∈ V
46 ovex 7192 . . . 4 (-1R ·R (𝑦 ·R 𝑤)) ∈ V
47 addcomsr 10512 . . . 4 (𝑓 +R 𝑔) = (𝑔 +R 𝑓)
48 addasssr 10513 . . . 4 ((𝑓 +R 𝑔) +R ) = (𝑓 +R (𝑔 +R ))
49 ovex 7192 . . . 4 (-1R ·R (𝑦 ·R 𝑢)) ∈ V
5044, 45, 46, 47, 48, 49caov4 7382 . . 3 (((𝑥 ·R 𝑧) +R (𝑥 ·R 𝑣)) +R ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢)))) = (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) +R ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))))
5143, 50eqtri 2847 . 2 ((𝑥 ·R (𝑧 +R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 +R 𝑢)))) = (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) +R ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))))
52 distrsr 10516 . . . 4 (𝑦 ·R (𝑧 +R 𝑣)) = ((𝑦 ·R 𝑧) +R (𝑦 ·R 𝑣))
53 distrsr 10516 . . . 4 (𝑥 ·R (𝑤 +R 𝑢)) = ((𝑥 ·R 𝑤) +R (𝑥 ·R 𝑢))
5452, 53oveq12i 7171 . . 3 ((𝑦 ·R (𝑧 +R 𝑣)) +R (𝑥 ·R (𝑤 +R 𝑢))) = (((𝑦 ·R 𝑧) +R (𝑦 ·R 𝑣)) +R ((𝑥 ·R 𝑤) +R (𝑥 ·R 𝑢)))
55 ovex 7192 . . . 4 (𝑦 ·R 𝑧) ∈ V
56 ovex 7192 . . . 4 (𝑦 ·R 𝑣) ∈ V
57 ovex 7192 . . . 4 (𝑥 ·R 𝑤) ∈ V
58 ovex 7192 . . . 4 (𝑥 ·R 𝑢) ∈ V
5955, 56, 57, 47, 48, 58caov4 7382 . . 3 (((𝑦 ·R 𝑧) +R (𝑦 ·R 𝑣)) +R ((𝑥 ·R 𝑤) +R (𝑥 ·R 𝑢))) = (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) +R ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)))
6054, 59eqtri 2847 . 2 ((𝑦 ·R (𝑧 +R 𝑣)) +R (𝑥 ·R (𝑤 +R 𝑢))) = (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) +R ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)))
611, 2, 3, 4, 5, 6, 10, 24, 37, 51, 60ecovdi 8408 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113   E cep 5467  ccnv 5557  (class class class)co 7159  Rcnr 10290  -1Rcm1r 10293   +R cplr 10294   ·R cmr 10295  cc 10538   + caddc 10543   · cmul 10545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-omul 8110  df-er 8292  df-ec 8294  df-qs 8298  df-ni 10297  df-pli 10298  df-mi 10299  df-lti 10300  df-plpq 10333  df-mpq 10334  df-ltpq 10335  df-enq 10336  df-nq 10337  df-erq 10338  df-plq 10339  df-mq 10340  df-1nq 10341  df-rq 10342  df-ltnq 10343  df-np 10406  df-1p 10407  df-plp 10408  df-mp 10409  df-ltp 10410  df-enr 10480  df-nr 10481  df-plr 10482  df-mr 10483  df-m1r 10487  df-c 10546  df-add 10551  df-mul 10552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator