MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclsr Structured version   Visualization version   GIF version

Theorem mulclsr 11124
Description: Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulclsr ((𝐴R𝐵R) → (𝐴 ·R 𝐵) ∈ R)

Proof of Theorem mulclsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 11096 . . 3 R = ((P × P) / ~R )
2 oveq1 7438 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ))
32eleq1d 2826 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R )))
4 oveq2 7439 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 ·R 𝐵))
54eleq1d 2826 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 ·R 𝐵) ∈ ((P × P) / ~R )))
6 mulsrpr 11116 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
7 mulclpr 11060 . . . . . . . 8 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
8 mulclpr 11060 . . . . . . . 8 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
9 addclpr 11058 . . . . . . . 8 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
107, 8, 9syl2an 596 . . . . . . 7 (((𝑥P𝑧P) ∧ (𝑦P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
1110an4s 660 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
12 mulclpr 11060 . . . . . . . 8 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
13 mulclpr 11060 . . . . . . . 8 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
14 addclpr 11058 . . . . . . . 8 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1512, 13, 14syl2an 596 . . . . . . 7 (((𝑥P𝑤P) ∧ (𝑦P𝑧P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1615an42s 661 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1711, 16jca 511 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P))
18 opelxpi 5722 . . . . 5 ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) → ⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩ ∈ (P × P))
19 enrex 11107 . . . . . 6 ~R ∈ V
2019ecelqsi 8813 . . . . 5 (⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩ ∈ (P × P) → [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ∈ ((P × P) / ~R ))
2117, 18, 203syl 18 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ∈ ((P × P) / ~R ))
226, 21eqeltrd 2841 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R ))
231, 3, 5, 222ecoptocl 8848 . 2 ((𝐴R𝐵R) → (𝐴 ·R 𝐵) ∈ ((P × P) / ~R ))
2423, 1eleqtrrdi 2852 1 ((𝐴R𝐵R) → (𝐴 ·R 𝐵) ∈ R)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cop 4632   × cxp 5683  (class class class)co 7431  [cec 8743   / cqs 8744  Pcnp 10899   +P cpp 10901   ·P cmp 10902   ~R cer 10904  Rcnr 10905   ·R cmr 10910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-ec 8747  df-qs 8751  df-ni 10912  df-pli 10913  df-mi 10914  df-lti 10915  df-plpq 10948  df-mpq 10949  df-ltpq 10950  df-enq 10951  df-nq 10952  df-erq 10953  df-plq 10954  df-mq 10955  df-1nq 10956  df-rq 10957  df-ltnq 10958  df-np 11021  df-plp 11023  df-mp 11024  df-ltp 11025  df-enr 11095  df-nr 11096  df-mr 11098
This theorem is referenced by:  dmmulsr  11126  negexsr  11142  sqgt0sr  11146  recexsr  11147  map2psrpr  11150  mulresr  11179  axmulf  11186  axmulrcl  11194  axmulass  11197  axdistr  11198  axrnegex  11202
  Copyright terms: Public domain W3C validator