Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulclsr | Structured version Visualization version GIF version |
Description: Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulclsr | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 10743 | . . 3 ⊢ R = ((P × P) / ~R ) | |
2 | oveq1 7262 | . . . 4 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) = (𝐴 ·R [〈𝑧, 𝑤〉] ~R )) | |
3 | 2 | eleq1d 2823 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 ·R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ))) |
4 | oveq2 7263 | . . . 4 ⊢ ([〈𝑧, 𝑤〉] ~R = 𝐵 → (𝐴 ·R [〈𝑧, 𝑤〉] ~R ) = (𝐴 ·R 𝐵)) | |
5 | 4 | eleq1d 2823 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ~R = 𝐵 → ((𝐴 ·R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 ·R 𝐵) ∈ ((P × P) / ~R ))) |
6 | mulsrpr 10763 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) = [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ) | |
7 | mulclpr 10707 | . . . . . . . 8 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥 ·P 𝑧) ∈ P) | |
8 | mulclpr 10707 | . . . . . . . 8 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P) → (𝑦 ·P 𝑤) ∈ P) | |
9 | addclpr 10705 | . . . . . . . 8 ⊢ (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) | |
10 | 7, 8, 9 | syl2an 595 | . . . . . . 7 ⊢ (((𝑥 ∈ P ∧ 𝑧 ∈ P) ∧ (𝑦 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) |
11 | 10 | an4s 656 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) |
12 | mulclpr 10707 | . . . . . . . 8 ⊢ ((𝑥 ∈ P ∧ 𝑤 ∈ P) → (𝑥 ·P 𝑤) ∈ P) | |
13 | mulclpr 10707 | . . . . . . . 8 ⊢ ((𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦 ·P 𝑧) ∈ P) | |
14 | addclpr 10705 | . . . . . . . 8 ⊢ (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) | |
15 | 12, 13, 14 | syl2an 595 | . . . . . . 7 ⊢ (((𝑥 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑦 ∈ P ∧ 𝑧 ∈ P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) |
16 | 15 | an42s 657 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) |
17 | 11, 16 | jca 511 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)) |
18 | opelxpi 5617 | . . . . 5 ⊢ ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) → 〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉 ∈ (P × P)) | |
19 | enrex 10754 | . . . . . 6 ⊢ ~R ∈ V | |
20 | 19 | ecelqsi 8520 | . . . . 5 ⊢ (〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉 ∈ (P × P) → [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ∈ ((P × P) / ~R )) |
21 | 17, 18, 20 | 3syl 18 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ∈ ((P × P) / ~R )) |
22 | 6, 21 | eqeltrd 2839 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R )) |
23 | 1, 3, 5, 22 | 2ecoptocl 8555 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ ((P × P) / ~R )) |
24 | 23, 1 | eleqtrrdi 2850 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 × cxp 5578 (class class class)co 7255 [cec 8454 / cqs 8455 Pcnp 10546 +P cpp 10548 ·P cmp 10549 ~R cer 10551 Rcnr 10552 ·R cmr 10557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-ec 8458 df-qs 8462 df-ni 10559 df-pli 10560 df-mi 10561 df-lti 10562 df-plpq 10595 df-mpq 10596 df-ltpq 10597 df-enq 10598 df-nq 10599 df-erq 10600 df-plq 10601 df-mq 10602 df-1nq 10603 df-rq 10604 df-ltnq 10605 df-np 10668 df-plp 10670 df-mp 10671 df-ltp 10672 df-enr 10742 df-nr 10743 df-mr 10745 |
This theorem is referenced by: dmmulsr 10773 negexsr 10789 sqgt0sr 10793 recexsr 10794 map2psrpr 10797 mulresr 10826 axmulf 10833 axmulrcl 10841 axmulass 10844 axdistr 10845 axrnegex 10849 |
Copyright terms: Public domain | W3C validator |