| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulclsr | Structured version Visualization version GIF version | ||
| Description: Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulclsr | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 10950 | . . 3 ⊢ R = ((P × P) / ~R ) | |
| 2 | oveq1 7356 | . . . 4 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) = (𝐴 ·R [〈𝑧, 𝑤〉] ~R )) | |
| 3 | 2 | eleq1d 2813 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 ·R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ))) |
| 4 | oveq2 7357 | . . . 4 ⊢ ([〈𝑧, 𝑤〉] ~R = 𝐵 → (𝐴 ·R [〈𝑧, 𝑤〉] ~R ) = (𝐴 ·R 𝐵)) | |
| 5 | 4 | eleq1d 2813 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ~R = 𝐵 → ((𝐴 ·R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 ·R 𝐵) ∈ ((P × P) / ~R ))) |
| 6 | mulsrpr 10970 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) = [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ) | |
| 7 | mulclpr 10914 | . . . . . . . 8 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥 ·P 𝑧) ∈ P) | |
| 8 | mulclpr 10914 | . . . . . . . 8 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P) → (𝑦 ·P 𝑤) ∈ P) | |
| 9 | addclpr 10912 | . . . . . . . 8 ⊢ (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) | |
| 10 | 7, 8, 9 | syl2an 596 | . . . . . . 7 ⊢ (((𝑥 ∈ P ∧ 𝑧 ∈ P) ∧ (𝑦 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) |
| 11 | 10 | an4s 660 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) |
| 12 | mulclpr 10914 | . . . . . . . 8 ⊢ ((𝑥 ∈ P ∧ 𝑤 ∈ P) → (𝑥 ·P 𝑤) ∈ P) | |
| 13 | mulclpr 10914 | . . . . . . . 8 ⊢ ((𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦 ·P 𝑧) ∈ P) | |
| 14 | addclpr 10912 | . . . . . . . 8 ⊢ (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) | |
| 15 | 12, 13, 14 | syl2an 596 | . . . . . . 7 ⊢ (((𝑥 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑦 ∈ P ∧ 𝑧 ∈ P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) |
| 16 | 15 | an42s 661 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) |
| 17 | 11, 16 | jca 511 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)) |
| 18 | opelxpi 5656 | . . . . 5 ⊢ ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) → 〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉 ∈ (P × P)) | |
| 19 | enrex 10961 | . . . . . 6 ⊢ ~R ∈ V | |
| 20 | 19 | ecelqsi 8697 | . . . . 5 ⊢ (〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉 ∈ (P × P) → [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ∈ ((P × P) / ~R )) |
| 21 | 17, 18, 20 | 3syl 18 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ∈ ((P × P) / ~R )) |
| 22 | 6, 21 | eqeltrd 2828 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R )) |
| 23 | 1, 3, 5, 22 | 2ecoptocl 8735 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ ((P × P) / ~R )) |
| 24 | 23, 1 | eleqtrrdi 2839 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4583 × cxp 5617 (class class class)co 7349 [cec 8623 / cqs 8624 Pcnp 10753 +P cpp 10755 ·P cmp 10756 ~R cer 10758 Rcnr 10759 ·R cmr 10764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-omul 8393 df-er 8625 df-ec 8627 df-qs 8631 df-ni 10766 df-pli 10767 df-mi 10768 df-lti 10769 df-plpq 10802 df-mpq 10803 df-ltpq 10804 df-enq 10805 df-nq 10806 df-erq 10807 df-plq 10808 df-mq 10809 df-1nq 10810 df-rq 10811 df-ltnq 10812 df-np 10875 df-plp 10877 df-mp 10878 df-ltp 10879 df-enr 10949 df-nr 10950 df-mr 10952 |
| This theorem is referenced by: dmmulsr 10980 negexsr 10996 sqgt0sr 11000 recexsr 11001 map2psrpr 11004 mulresr 11033 axmulf 11040 axmulrcl 11048 axmulass 11051 axdistr 11052 axrnegex 11056 |
| Copyright terms: Public domain | W3C validator |