Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulclsr | Structured version Visualization version GIF version |
Description: Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulclsr | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 10530 | . . 3 ⊢ R = ((P × P) / ~R ) | |
2 | oveq1 7164 | . . . 4 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) = (𝐴 ·R [〈𝑧, 𝑤〉] ~R )) | |
3 | 2 | eleq1d 2837 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 ·R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ))) |
4 | oveq2 7165 | . . . 4 ⊢ ([〈𝑧, 𝑤〉] ~R = 𝐵 → (𝐴 ·R [〈𝑧, 𝑤〉] ~R ) = (𝐴 ·R 𝐵)) | |
5 | 4 | eleq1d 2837 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ~R = 𝐵 → ((𝐴 ·R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 ·R 𝐵) ∈ ((P × P) / ~R ))) |
6 | mulsrpr 10550 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) = [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ) | |
7 | mulclpr 10494 | . . . . . . . 8 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥 ·P 𝑧) ∈ P) | |
8 | mulclpr 10494 | . . . . . . . 8 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P) → (𝑦 ·P 𝑤) ∈ P) | |
9 | addclpr 10492 | . . . . . . . 8 ⊢ (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) | |
10 | 7, 8, 9 | syl2an 598 | . . . . . . 7 ⊢ (((𝑥 ∈ P ∧ 𝑧 ∈ P) ∧ (𝑦 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) |
11 | 10 | an4s 659 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) |
12 | mulclpr 10494 | . . . . . . . 8 ⊢ ((𝑥 ∈ P ∧ 𝑤 ∈ P) → (𝑥 ·P 𝑤) ∈ P) | |
13 | mulclpr 10494 | . . . . . . . 8 ⊢ ((𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦 ·P 𝑧) ∈ P) | |
14 | addclpr 10492 | . . . . . . . 8 ⊢ (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) | |
15 | 12, 13, 14 | syl2an 598 | . . . . . . 7 ⊢ (((𝑥 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑦 ∈ P ∧ 𝑧 ∈ P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) |
16 | 15 | an42s 660 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) |
17 | 11, 16 | jca 515 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)) |
18 | opelxpi 5566 | . . . . 5 ⊢ ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) → 〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉 ∈ (P × P)) | |
19 | enrex 10541 | . . . . . 6 ⊢ ~R ∈ V | |
20 | 19 | ecelqsi 8370 | . . . . 5 ⊢ (〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉 ∈ (P × P) → [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ∈ ((P × P) / ~R )) |
21 | 17, 18, 20 | 3syl 18 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ∈ ((P × P) / ~R )) |
22 | 6, 21 | eqeltrd 2853 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R )) |
23 | 1, 3, 5, 22 | 2ecoptocl 8405 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ ((P × P) / ~R )) |
24 | 23, 1 | eleqtrrdi 2864 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1539 ∈ wcel 2112 〈cop 4532 × cxp 5527 (class class class)co 7157 [cec 8304 / cqs 8305 Pcnp 10333 +P cpp 10335 ·P cmp 10336 ~R cer 10338 Rcnr 10339 ·R cmr 10344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-inf2 9151 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-1st 7700 df-2nd 7701 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-oadd 8123 df-omul 8124 df-er 8306 df-ec 8308 df-qs 8312 df-ni 10346 df-pli 10347 df-mi 10348 df-lti 10349 df-plpq 10382 df-mpq 10383 df-ltpq 10384 df-enq 10385 df-nq 10386 df-erq 10387 df-plq 10388 df-mq 10389 df-1nq 10390 df-rq 10391 df-ltnq 10392 df-np 10455 df-plp 10457 df-mp 10458 df-ltp 10459 df-enr 10529 df-nr 10530 df-mr 10532 |
This theorem is referenced by: dmmulsr 10560 negexsr 10576 sqgt0sr 10580 recexsr 10581 map2psrpr 10584 mulresr 10613 axmulf 10620 axmulrcl 10628 axmulass 10631 axdistr 10632 axrnegex 10636 |
Copyright terms: Public domain | W3C validator |