MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclsr Structured version   Visualization version   GIF version

Theorem mulclsr 11082
Description: Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulclsr ((๐ด โˆˆ R โˆง ๐ต โˆˆ R) โ†’ (๐ด ยทR ๐ต) โˆˆ R)

Proof of Theorem mulclsr
Dummy variables ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ค are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 11054 . . 3 R = ((P ร— P) / ~R )
2 oveq1 7419 . . . 4 ([โŸจ๐‘ฅ, ๐‘ฆโŸฉ] ~R = ๐ด โ†’ ([โŸจ๐‘ฅ, ๐‘ฆโŸฉ] ~R ยทR [โŸจ๐‘ง, ๐‘คโŸฉ] ~R ) = (๐ด ยทR [โŸจ๐‘ง, ๐‘คโŸฉ] ~R ))
32eleq1d 2817 . . 3 ([โŸจ๐‘ฅ, ๐‘ฆโŸฉ] ~R = ๐ด โ†’ (([โŸจ๐‘ฅ, ๐‘ฆโŸฉ] ~R ยทR [โŸจ๐‘ง, ๐‘คโŸฉ] ~R ) โˆˆ ((P ร— P) / ~R ) โ†” (๐ด ยทR [โŸจ๐‘ง, ๐‘คโŸฉ] ~R ) โˆˆ ((P ร— P) / ~R )))
4 oveq2 7420 . . . 4 ([โŸจ๐‘ง, ๐‘คโŸฉ] ~R = ๐ต โ†’ (๐ด ยทR [โŸจ๐‘ง, ๐‘คโŸฉ] ~R ) = (๐ด ยทR ๐ต))
54eleq1d 2817 . . 3 ([โŸจ๐‘ง, ๐‘คโŸฉ] ~R = ๐ต โ†’ ((๐ด ยทR [โŸจ๐‘ง, ๐‘คโŸฉ] ~R ) โˆˆ ((P ร— P) / ~R ) โ†” (๐ด ยทR ๐ต) โˆˆ ((P ร— P) / ~R )))
6 mulsrpr 11074 . . . 4 (((๐‘ฅ โˆˆ P โˆง ๐‘ฆ โˆˆ P) โˆง (๐‘ง โˆˆ P โˆง ๐‘ค โˆˆ P)) โ†’ ([โŸจ๐‘ฅ, ๐‘ฆโŸฉ] ~R ยทR [โŸจ๐‘ง, ๐‘คโŸฉ] ~R ) = [โŸจ((๐‘ฅ ยทP ๐‘ง) +P (๐‘ฆ ยทP ๐‘ค)), ((๐‘ฅ ยทP ๐‘ค) +P (๐‘ฆ ยทP ๐‘ง))โŸฉ] ~R )
7 mulclpr 11018 . . . . . . . 8 ((๐‘ฅ โˆˆ P โˆง ๐‘ง โˆˆ P) โ†’ (๐‘ฅ ยทP ๐‘ง) โˆˆ P)
8 mulclpr 11018 . . . . . . . 8 ((๐‘ฆ โˆˆ P โˆง ๐‘ค โˆˆ P) โ†’ (๐‘ฆ ยทP ๐‘ค) โˆˆ P)
9 addclpr 11016 . . . . . . . 8 (((๐‘ฅ ยทP ๐‘ง) โˆˆ P โˆง (๐‘ฆ ยทP ๐‘ค) โˆˆ P) โ†’ ((๐‘ฅ ยทP ๐‘ง) +P (๐‘ฆ ยทP ๐‘ค)) โˆˆ P)
107, 8, 9syl2an 595 . . . . . . 7 (((๐‘ฅ โˆˆ P โˆง ๐‘ง โˆˆ P) โˆง (๐‘ฆ โˆˆ P โˆง ๐‘ค โˆˆ P)) โ†’ ((๐‘ฅ ยทP ๐‘ง) +P (๐‘ฆ ยทP ๐‘ค)) โˆˆ P)
1110an4s 657 . . . . . 6 (((๐‘ฅ โˆˆ P โˆง ๐‘ฆ โˆˆ P) โˆง (๐‘ง โˆˆ P โˆง ๐‘ค โˆˆ P)) โ†’ ((๐‘ฅ ยทP ๐‘ง) +P (๐‘ฆ ยทP ๐‘ค)) โˆˆ P)
12 mulclpr 11018 . . . . . . . 8 ((๐‘ฅ โˆˆ P โˆง ๐‘ค โˆˆ P) โ†’ (๐‘ฅ ยทP ๐‘ค) โˆˆ P)
13 mulclpr 11018 . . . . . . . 8 ((๐‘ฆ โˆˆ P โˆง ๐‘ง โˆˆ P) โ†’ (๐‘ฆ ยทP ๐‘ง) โˆˆ P)
14 addclpr 11016 . . . . . . . 8 (((๐‘ฅ ยทP ๐‘ค) โˆˆ P โˆง (๐‘ฆ ยทP ๐‘ง) โˆˆ P) โ†’ ((๐‘ฅ ยทP ๐‘ค) +P (๐‘ฆ ยทP ๐‘ง)) โˆˆ P)
1512, 13, 14syl2an 595 . . . . . . 7 (((๐‘ฅ โˆˆ P โˆง ๐‘ค โˆˆ P) โˆง (๐‘ฆ โˆˆ P โˆง ๐‘ง โˆˆ P)) โ†’ ((๐‘ฅ ยทP ๐‘ค) +P (๐‘ฆ ยทP ๐‘ง)) โˆˆ P)
1615an42s 658 . . . . . 6 (((๐‘ฅ โˆˆ P โˆง ๐‘ฆ โˆˆ P) โˆง (๐‘ง โˆˆ P โˆง ๐‘ค โˆˆ P)) โ†’ ((๐‘ฅ ยทP ๐‘ค) +P (๐‘ฆ ยทP ๐‘ง)) โˆˆ P)
1711, 16jca 511 . . . . 5 (((๐‘ฅ โˆˆ P โˆง ๐‘ฆ โˆˆ P) โˆง (๐‘ง โˆˆ P โˆง ๐‘ค โˆˆ P)) โ†’ (((๐‘ฅ ยทP ๐‘ง) +P (๐‘ฆ ยทP ๐‘ค)) โˆˆ P โˆง ((๐‘ฅ ยทP ๐‘ค) +P (๐‘ฆ ยทP ๐‘ง)) โˆˆ P))
18 opelxpi 5713 . . . . 5 ((((๐‘ฅ ยทP ๐‘ง) +P (๐‘ฆ ยทP ๐‘ค)) โˆˆ P โˆง ((๐‘ฅ ยทP ๐‘ค) +P (๐‘ฆ ยทP ๐‘ง)) โˆˆ P) โ†’ โŸจ((๐‘ฅ ยทP ๐‘ง) +P (๐‘ฆ ยทP ๐‘ค)), ((๐‘ฅ ยทP ๐‘ค) +P (๐‘ฆ ยทP ๐‘ง))โŸฉ โˆˆ (P ร— P))
19 enrex 11065 . . . . . 6 ~R โˆˆ V
2019ecelqsi 8770 . . . . 5 (โŸจ((๐‘ฅ ยทP ๐‘ง) +P (๐‘ฆ ยทP ๐‘ค)), ((๐‘ฅ ยทP ๐‘ค) +P (๐‘ฆ ยทP ๐‘ง))โŸฉ โˆˆ (P ร— P) โ†’ [โŸจ((๐‘ฅ ยทP ๐‘ง) +P (๐‘ฆ ยทP ๐‘ค)), ((๐‘ฅ ยทP ๐‘ค) +P (๐‘ฆ ยทP ๐‘ง))โŸฉ] ~R โˆˆ ((P ร— P) / ~R ))
2117, 18, 203syl 18 . . . 4 (((๐‘ฅ โˆˆ P โˆง ๐‘ฆ โˆˆ P) โˆง (๐‘ง โˆˆ P โˆง ๐‘ค โˆˆ P)) โ†’ [โŸจ((๐‘ฅ ยทP ๐‘ง) +P (๐‘ฆ ยทP ๐‘ค)), ((๐‘ฅ ยทP ๐‘ค) +P (๐‘ฆ ยทP ๐‘ง))โŸฉ] ~R โˆˆ ((P ร— P) / ~R ))
226, 21eqeltrd 2832 . . 3 (((๐‘ฅ โˆˆ P โˆง ๐‘ฆ โˆˆ P) โˆง (๐‘ง โˆˆ P โˆง ๐‘ค โˆˆ P)) โ†’ ([โŸจ๐‘ฅ, ๐‘ฆโŸฉ] ~R ยทR [โŸจ๐‘ง, ๐‘คโŸฉ] ~R ) โˆˆ ((P ร— P) / ~R ))
231, 3, 5, 222ecoptocl 8805 . 2 ((๐ด โˆˆ R โˆง ๐ต โˆˆ R) โ†’ (๐ด ยทR ๐ต) โˆˆ ((P ร— P) / ~R ))
2423, 1eleqtrrdi 2843 1 ((๐ด โˆˆ R โˆง ๐ต โˆˆ R) โ†’ (๐ด ยทR ๐ต) โˆˆ R)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   = wceq 1540   โˆˆ wcel 2105  โŸจcop 4634   ร— cxp 5674  (class class class)co 7412  [cec 8704   / cqs 8705  Pcnp 10857   +P cpp 10859   ยทP cmp 10860   ~R cer 10862  Rcnr 10863   ยทR cmr 10868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-inf2 9639
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-oadd 8473  df-omul 8474  df-er 8706  df-ec 8708  df-qs 8712  df-ni 10870  df-pli 10871  df-mi 10872  df-lti 10873  df-plpq 10906  df-mpq 10907  df-ltpq 10908  df-enq 10909  df-nq 10910  df-erq 10911  df-plq 10912  df-mq 10913  df-1nq 10914  df-rq 10915  df-ltnq 10916  df-np 10979  df-plp 10981  df-mp 10982  df-ltp 10983  df-enr 11053  df-nr 11054  df-mr 11056
This theorem is referenced by:  dmmulsr  11084  negexsr  11100  sqgt0sr  11104  recexsr  11105  map2psrpr  11108  mulresr  11137  axmulf  11144  axmulrcl  11152  axmulass  11155  axdistr  11156  axrnegex  11160
  Copyright terms: Public domain W3C validator