MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assasca Structured version   Visualization version   GIF version

Theorem assasca 21905
Description: The scalars of an associative algebra form a ring. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by SN, 2-Mar-2025.)
Hypothesis
Ref Expression
assasca.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
assasca (𝑊 ∈ AssAlg → 𝐹 ∈ Ring)

Proof of Theorem assasca
StepHypRef Expression
1 assalmod 21903 . 2 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
2 assasca.f . . 3 𝐹 = (Scalar‘𝑊)
32lmodring 20888 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
41, 3syl 17 1 (𝑊 ∈ AssAlg → 𝐹 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  Scalarcsca 17314  Ringcrg 20260  LModclmod 20880  AssAlgcasa 21893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-lmod 20882  df-assa 21896
This theorem is referenced by:  assa2ass  21906  assa2ass2  21907  asclrhm  21933  assamulgscmlem2  21943  asclmulg  21945
  Copyright terms: Public domain W3C validator