MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assasca Structured version   Visualization version   GIF version

Theorem assasca 21822
Description: The scalars of an associative algebra form a ring. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by SN, 2-Mar-2025.)
Hypothesis
Ref Expression
assasca.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
assasca (𝑊 ∈ AssAlg → 𝐹 ∈ Ring)

Proof of Theorem assasca
StepHypRef Expression
1 assalmod 21820 . 2 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
2 assasca.f . . 3 𝐹 = (Scalar‘𝑊)
32lmodring 20825 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
41, 3syl 17 1 (𝑊 ∈ AssAlg → 𝐹 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6531  Scalarcsca 17274  Ringcrg 20193  LModclmod 20817  AssAlgcasa 21810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-lmod 20819  df-assa 21813
This theorem is referenced by:  assa2ass  21823  assa2ass2  21824  asclrhm  21850  assamulgscmlem2  21860  asclmulg  21862
  Copyright terms: Public domain W3C validator