MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assasca Structured version   Visualization version   GIF version

Theorem assasca 21797
Description: The scalars of an associative algebra form a ring. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by SN, 2-Mar-2025.)
Hypothesis
Ref Expression
assasca.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
assasca (𝑊 ∈ AssAlg → 𝐹 ∈ Ring)

Proof of Theorem assasca
StepHypRef Expression
1 assalmod 21795 . 2 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
2 assasca.f . . 3 𝐹 = (Scalar‘𝑊)
32lmodring 20799 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
41, 3syl 17 1 (𝑊 ∈ AssAlg → 𝐹 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  Scalarcsca 17161  Ringcrg 20149  LModclmod 20791  AssAlgcasa 21785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-lmod 20793  df-assa 21788
This theorem is referenced by:  assa2ass  21798  assa2ass2  21799  asclrhm  21825  assamulgscmlem2  21835  asclmulg  21837
  Copyright terms: Public domain W3C validator