MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assamulgscmlem2 Structured version   Visualization version   GIF version

Theorem assamulgscmlem2 21835
Description: Lemma for assamulgscm 21836 (induction step). (Contributed by AV, 26-Aug-2019.)
Hypotheses
Ref Expression
assamulgscm.v 𝑉 = (Base‘𝑊)
assamulgscm.f 𝐹 = (Scalar‘𝑊)
assamulgscm.b 𝐵 = (Base‘𝐹)
assamulgscm.s · = ( ·𝑠𝑊)
assamulgscm.g 𝐺 = (mulGrp‘𝐹)
assamulgscm.p = (.g𝐺)
assamulgscm.h 𝐻 = (mulGrp‘𝑊)
assamulgscm.e 𝐸 = (.g𝐻)
Assertion
Ref Expression
assamulgscmlem2 (𝑦 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))

Proof of Theorem assamulgscmlem2
StepHypRef Expression
1 assaring 21796 . . . . . . . 8 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
2 assamulgscm.h . . . . . . . . 9 𝐻 = (mulGrp‘𝑊)
32ringmgp 20155 . . . . . . . 8 (𝑊 ∈ Ring → 𝐻 ∈ Mnd)
41, 3syl 17 . . . . . . 7 (𝑊 ∈ AssAlg → 𝐻 ∈ Mnd)
54adantl 481 . . . . . 6 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐻 ∈ Mnd)
65adantl 481 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐻 ∈ Mnd)
76adantr 480 . . . 4 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → 𝐻 ∈ Mnd)
8 simpll 766 . . . 4 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → 𝑦 ∈ ℕ0)
9 assalmod 21795 . . . . . . . 8 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
109adantl 481 . . . . . . 7 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑊 ∈ LMod)
11 simpll 766 . . . . . . 7 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴𝐵)
12 simplr 768 . . . . . . 7 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑋𝑉)
13 assamulgscm.v . . . . . . . 8 𝑉 = (Base‘𝑊)
14 assamulgscm.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
15 assamulgscm.s . . . . . . . 8 · = ( ·𝑠𝑊)
16 assamulgscm.b . . . . . . . 8 𝐵 = (Base‘𝐹)
1713, 14, 15, 16lmodvscl 20809 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐴𝐵𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
1810, 11, 12, 17syl3anc 1373 . . . . . 6 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝐴 · 𝑋) ∈ 𝑉)
1918adantl 481 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝐴 · 𝑋) ∈ 𝑉)
2019adantr 480 . . . 4 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → (𝐴 · 𝑋) ∈ 𝑉)
212, 13mgpbas 20061 . . . . 5 𝑉 = (Base‘𝐻)
22 assamulgscm.e . . . . 5 𝐸 = (.g𝐻)
23 eqid 2731 . . . . . 6 (.r𝑊) = (.r𝑊)
242, 23mgpplusg 20060 . . . . 5 (.r𝑊) = (+g𝐻)
2521, 22, 24mulgnn0p1 18995 . . . 4 ((𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ (𝐴 · 𝑋) ∈ 𝑉) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)))
267, 8, 20, 25syl3anc 1373 . . 3 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)))
27 oveq1 7353 . . . 4 ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)) = (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)))
28 simprr 772 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑊 ∈ AssAlg)
29 assamulgscm.g . . . . . . . 8 𝐺 = (mulGrp‘𝐹)
3014eqcomi 2740 . . . . . . . . 9 (Scalar‘𝑊) = 𝐹
3130fveq2i 6825 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘𝐹)
3229, 31mgpbas 20061 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘𝐺)
33 assamulgscm.p . . . . . . 7 = (.g𝐺)
3414assasca 21797 . . . . . . . . . 10 (𝑊 ∈ AssAlg → 𝐹 ∈ Ring)
3529ringmgp 20155 . . . . . . . . . 10 (𝐹 ∈ Ring → 𝐺 ∈ Mnd)
3634, 35syl 17 . . . . . . . . 9 (𝑊 ∈ AssAlg → 𝐺 ∈ Mnd)
3736adantl 481 . . . . . . . 8 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐺 ∈ Mnd)
3837adantl 481 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐺 ∈ Mnd)
39 simpl 482 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑦 ∈ ℕ0)
4016a1i 11 . . . . . . . . . . . . 13 (𝑊 ∈ AssAlg → 𝐵 = (Base‘𝐹))
4114fveq2i 6825 . . . . . . . . . . . . 13 (Base‘𝐹) = (Base‘(Scalar‘𝑊))
4240, 41eqtrdi 2782 . . . . . . . . . . . 12 (𝑊 ∈ AssAlg → 𝐵 = (Base‘(Scalar‘𝑊)))
4342eleq2d 2817 . . . . . . . . . . 11 (𝑊 ∈ AssAlg → (𝐴𝐵𝐴 ∈ (Base‘(Scalar‘𝑊))))
4443biimpcd 249 . . . . . . . . . 10 (𝐴𝐵 → (𝑊 ∈ AssAlg → 𝐴 ∈ (Base‘(Scalar‘𝑊))))
4544adantr 480 . . . . . . . . 9 ((𝐴𝐵𝑋𝑉) → (𝑊 ∈ AssAlg → 𝐴 ∈ (Base‘(Scalar‘𝑊))))
4645imp 406 . . . . . . . 8 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴 ∈ (Base‘(Scalar‘𝑊)))
4746adantl 481 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐴 ∈ (Base‘(Scalar‘𝑊)))
4832, 33, 38, 39, 47mulgnn0cld 19005 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)))
49 simprlr 779 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑋𝑉)
5021, 22, 6, 39, 49mulgnn0cld 19005 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦𝐸𝑋) ∈ 𝑉)
51 eqid 2731 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
52 eqid 2731 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
5313, 51, 52, 15, 23assaass 21793 . . . . . 6 ((𝑊 ∈ AssAlg ∧ ((𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑦𝐸𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑋) ∈ 𝑉)) → (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)) = ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))))
5428, 48, 50, 19, 53syl13anc 1374 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)) = ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))))
5513, 51, 52, 15, 23assaassr 21794 . . . . . . . 8 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑦𝐸𝑋) ∈ 𝑉𝑋𝑉)) → ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋)) = (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋)))
5628, 47, 50, 49, 55syl13anc 1374 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋)) = (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋)))
5756oveq2d 7362 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))) = ((𝑦 𝐴) · (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋))))
5821, 22, 24mulgnn0p1 18995 . . . . . . . . . 10 ((𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝑉) → ((𝑦 + 1)𝐸𝑋) = ((𝑦𝐸𝑋)(.r𝑊)𝑋))
596, 39, 49, 58syl3anc 1373 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1)𝐸𝑋) = ((𝑦𝐸𝑋)(.r𝑊)𝑋))
6059eqcomd 2737 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦𝐸𝑋)(.r𝑊)𝑋) = ((𝑦 + 1)𝐸𝑋))
6160oveq2d 7362 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋)) = (𝐴 · ((𝑦 + 1)𝐸𝑋)))
6261oveq2d 7362 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋))) = ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))))
6310adantl 481 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑊 ∈ LMod)
64 peano2nn0 12418 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
6564adantr 480 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦 + 1) ∈ ℕ0)
6621, 22, 6, 65, 49mulgnn0cld 19005 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)
67 eqid 2731 . . . . . . . . 9 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
6813, 51, 15, 52, 67lmodvsass 20818 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)) → (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)) = ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))))
6968eqcomd 2737 . . . . . . 7 ((𝑊 ∈ LMod ∧ ((𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)) → ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))) = (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)))
7063, 48, 47, 66, 69syl13anc 1374 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))) = (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)))
7157, 62, 703eqtrd 2770 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))) = (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)))
72 simprll 778 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐴𝐵)
7329, 16mgpbas 20061 . . . . . . . . . 10 𝐵 = (Base‘𝐺)
74 eqid 2731 . . . . . . . . . . 11 (.r𝐹) = (.r𝐹)
7529, 74mgpplusg 20060 . . . . . . . . . 10 (.r𝐹) = (+g𝐺)
7673, 33, 75mulgnn0p1 18995 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐴𝐵) → ((𝑦 + 1) 𝐴) = ((𝑦 𝐴)(.r𝐹)𝐴))
7738, 39, 72, 76syl3anc 1373 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1) 𝐴) = ((𝑦 𝐴)(.r𝐹)𝐴))
7814a1i 11 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐹 = (Scalar‘𝑊))
7978fveq2d 6826 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (.r𝐹) = (.r‘(Scalar‘𝑊)))
8079oveqd 7363 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴)(.r𝐹)𝐴) = ((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴))
8177, 80eqtrd 2766 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1) 𝐴) = ((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴))
8281eqcomd 2737 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) = ((𝑦 + 1) 𝐴))
8382oveq1d 7361 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
8454, 71, 833eqtrd 2770 . . . 4 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
8527, 84sylan9eqr 2788 . . 3 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
8626, 85eqtrd 2766 . 2 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
8786exp31 419 1 (𝑦 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  1c1 11004   + caddc 11006  0cn0 12378  Basecbs 17117  .rcmulr 17159  Scalarcsca 17161   ·𝑠 cvsca 17162  Mndcmnd 18639  .gcmg 18977  mulGrpcmgp 20056  Ringcrg 20149  LModclmod 20791  AssAlgcasa 21785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-seq 13906  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mulg 18978  df-mgp 20057  df-ring 20151  df-lmod 20793  df-assa 21788
This theorem is referenced by:  assamulgscm  21836
  Copyright terms: Public domain W3C validator