MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assamulgscmlem2 Structured version   Visualization version   GIF version

Theorem assamulgscmlem2 19805
Description: Lemma for assamulgscm 19806 (induction step). (Contributed by AV, 26-Aug-2019.)
Hypotheses
Ref Expression
assamulgscm.v 𝑉 = (Base‘𝑊)
assamulgscm.f 𝐹 = (Scalar‘𝑊)
assamulgscm.b 𝐵 = (Base‘𝐹)
assamulgscm.s · = ( ·𝑠𝑊)
assamulgscm.g 𝐺 = (mulGrp‘𝐹)
assamulgscm.p = (.g𝐺)
assamulgscm.h 𝐻 = (mulGrp‘𝑊)
assamulgscm.e 𝐸 = (.g𝐻)
Assertion
Ref Expression
assamulgscmlem2 (𝑦 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))

Proof of Theorem assamulgscmlem2
StepHypRef Expression
1 assaring 19770 . . . . . . . 8 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
2 assamulgscm.h . . . . . . . . 9 𝐻 = (mulGrp‘𝑊)
32ringmgp 18981 . . . . . . . 8 (𝑊 ∈ Ring → 𝐻 ∈ Mnd)
41, 3syl 17 . . . . . . 7 (𝑊 ∈ AssAlg → 𝐻 ∈ Mnd)
54adantl 482 . . . . . 6 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐻 ∈ Mnd)
65adantl 482 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐻 ∈ Mnd)
76adantr 481 . . . 4 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → 𝐻 ∈ Mnd)
8 simpll 763 . . . 4 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → 𝑦 ∈ ℕ0)
9 assalmod 19769 . . . . . . . 8 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
109adantl 482 . . . . . . 7 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑊 ∈ LMod)
11 simpll 763 . . . . . . 7 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴𝐵)
12 simplr 765 . . . . . . 7 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑋𝑉)
13 assamulgscm.v . . . . . . . 8 𝑉 = (Base‘𝑊)
14 assamulgscm.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
15 assamulgscm.s . . . . . . . 8 · = ( ·𝑠𝑊)
16 assamulgscm.b . . . . . . . 8 𝐵 = (Base‘𝐹)
1713, 14, 15, 16lmodvscl 19329 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐴𝐵𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
1810, 11, 12, 17syl3anc 1362 . . . . . 6 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝐴 · 𝑋) ∈ 𝑉)
1918adantl 482 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝐴 · 𝑋) ∈ 𝑉)
2019adantr 481 . . . 4 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → (𝐴 · 𝑋) ∈ 𝑉)
212, 13mgpbas 18923 . . . . 5 𝑉 = (Base‘𝐻)
22 assamulgscm.e . . . . 5 𝐸 = (.g𝐻)
23 eqid 2793 . . . . . 6 (.r𝑊) = (.r𝑊)
242, 23mgpplusg 18921 . . . . 5 (.r𝑊) = (+g𝐻)
2521, 22, 24mulgnn0p1 17982 . . . 4 ((𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ (𝐴 · 𝑋) ∈ 𝑉) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)))
267, 8, 20, 25syl3anc 1362 . . 3 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)))
27 oveq1 7014 . . . 4 ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)) = (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)))
28 simprr 769 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑊 ∈ AssAlg)
2914assasca 19771 . . . . . . . . . 10 (𝑊 ∈ AssAlg → 𝐹 ∈ CRing)
30 crngring 18986 . . . . . . . . . 10 (𝐹 ∈ CRing → 𝐹 ∈ Ring)
31 assamulgscm.g . . . . . . . . . . 11 𝐺 = (mulGrp‘𝐹)
3231ringmgp 18981 . . . . . . . . . 10 (𝐹 ∈ Ring → 𝐺 ∈ Mnd)
3329, 30, 323syl 18 . . . . . . . . 9 (𝑊 ∈ AssAlg → 𝐺 ∈ Mnd)
3433adantl 482 . . . . . . . 8 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐺 ∈ Mnd)
3534adantl 482 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐺 ∈ Mnd)
36 simpl 483 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑦 ∈ ℕ0)
3716a1i 11 . . . . . . . . . . . . 13 (𝑊 ∈ AssAlg → 𝐵 = (Base‘𝐹))
3814fveq2i 6533 . . . . . . . . . . . . 13 (Base‘𝐹) = (Base‘(Scalar‘𝑊))
3937, 38syl6eq 2845 . . . . . . . . . . . 12 (𝑊 ∈ AssAlg → 𝐵 = (Base‘(Scalar‘𝑊)))
4039eleq2d 2866 . . . . . . . . . . 11 (𝑊 ∈ AssAlg → (𝐴𝐵𝐴 ∈ (Base‘(Scalar‘𝑊))))
4140biimpcd 250 . . . . . . . . . 10 (𝐴𝐵 → (𝑊 ∈ AssAlg → 𝐴 ∈ (Base‘(Scalar‘𝑊))))
4241adantr 481 . . . . . . . . 9 ((𝐴𝐵𝑋𝑉) → (𝑊 ∈ AssAlg → 𝐴 ∈ (Base‘(Scalar‘𝑊))))
4342imp 407 . . . . . . . 8 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴 ∈ (Base‘(Scalar‘𝑊)))
4443adantl 482 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐴 ∈ (Base‘(Scalar‘𝑊)))
4514eqcomi 2802 . . . . . . . . . 10 (Scalar‘𝑊) = 𝐹
4645fveq2i 6533 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘𝐹)
4731, 46mgpbas 18923 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘𝐺)
48 assamulgscm.p . . . . . . . 8 = (.g𝐺)
4947, 48mulgnn0cl 17987 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐴 ∈ (Base‘(Scalar‘𝑊))) → (𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)))
5035, 36, 44, 49syl3anc 1362 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)))
51 simprlr 776 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑋𝑉)
5221, 22mulgnn0cl 17987 . . . . . . 7 ((𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝑉) → (𝑦𝐸𝑋) ∈ 𝑉)
536, 36, 51, 52syl3anc 1362 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦𝐸𝑋) ∈ 𝑉)
54 eqid 2793 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
55 eqid 2793 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
5613, 54, 55, 15, 23assaass 19767 . . . . . 6 ((𝑊 ∈ AssAlg ∧ ((𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑦𝐸𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑋) ∈ 𝑉)) → (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)) = ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))))
5728, 50, 53, 19, 56syl13anc 1363 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)) = ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))))
5813, 54, 55, 15, 23assaassr 19768 . . . . . . . 8 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑦𝐸𝑋) ∈ 𝑉𝑋𝑉)) → ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋)) = (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋)))
5928, 44, 53, 51, 58syl13anc 1363 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋)) = (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋)))
6059oveq2d 7023 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))) = ((𝑦 𝐴) · (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋))))
6121, 22, 24mulgnn0p1 17982 . . . . . . . . . 10 ((𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝑉) → ((𝑦 + 1)𝐸𝑋) = ((𝑦𝐸𝑋)(.r𝑊)𝑋))
626, 36, 51, 61syl3anc 1362 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1)𝐸𝑋) = ((𝑦𝐸𝑋)(.r𝑊)𝑋))
6362eqcomd 2799 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦𝐸𝑋)(.r𝑊)𝑋) = ((𝑦 + 1)𝐸𝑋))
6463oveq2d 7023 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋)) = (𝐴 · ((𝑦 + 1)𝐸𝑋)))
6564oveq2d 7023 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋))) = ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))))
6610adantl 482 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑊 ∈ LMod)
67 peano2nn0 11774 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
6867adantr 481 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦 + 1) ∈ ℕ0)
6921, 22mulgnn0cl 17987 . . . . . . . 8 ((𝐻 ∈ Mnd ∧ (𝑦 + 1) ∈ ℕ0𝑋𝑉) → ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)
706, 68, 51, 69syl3anc 1362 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)
71 eqid 2793 . . . . . . . . 9 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
7213, 54, 15, 55, 71lmodvsass 19337 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)) → (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)) = ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))))
7372eqcomd 2799 . . . . . . 7 ((𝑊 ∈ LMod ∧ ((𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)) → ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))) = (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)))
7466, 50, 44, 70, 73syl13anc 1363 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))) = (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)))
7560, 65, 743eqtrd 2833 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))) = (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)))
76 simprll 775 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐴𝐵)
7731, 16mgpbas 18923 . . . . . . . . . 10 𝐵 = (Base‘𝐺)
78 eqid 2793 . . . . . . . . . . 11 (.r𝐹) = (.r𝐹)
7931, 78mgpplusg 18921 . . . . . . . . . 10 (.r𝐹) = (+g𝐺)
8077, 48, 79mulgnn0p1 17982 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐴𝐵) → ((𝑦 + 1) 𝐴) = ((𝑦 𝐴)(.r𝐹)𝐴))
8135, 36, 76, 80syl3anc 1362 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1) 𝐴) = ((𝑦 𝐴)(.r𝐹)𝐴))
8214a1i 11 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐹 = (Scalar‘𝑊))
8382fveq2d 6534 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (.r𝐹) = (.r‘(Scalar‘𝑊)))
8483oveqd 7024 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴)(.r𝐹)𝐴) = ((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴))
8581, 84eqtrd 2829 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1) 𝐴) = ((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴))
8685eqcomd 2799 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) = ((𝑦 + 1) 𝐴))
8786oveq1d 7022 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
8857, 75, 873eqtrd 2833 . . . 4 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
8927, 88sylan9eqr 2851 . . 3 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
9026, 89eqtrd 2829 . 2 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
9190exp31 420 1 (𝑦 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1078   = wceq 1520  wcel 2079  cfv 6217  (class class class)co 7007  1c1 10373   + caddc 10375  0cn0 11734  Basecbs 16300  .rcmulr 16383  Scalarcsca 16385   ·𝑠 cvsca 16386  Mndcmnd 17721  .gcmg 17969  mulGrpcmgp 18917  Ringcrg 18975  CRingccrg 18976  LModclmod 19312  AssAlgcasa 19759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-nn 11476  df-2 11537  df-n0 11735  df-z 11819  df-uz 12083  df-fz 12732  df-seq 13208  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-plusg 16395  df-0g 16532  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-mulg 17970  df-mgp 18918  df-ring 18977  df-cring 18978  df-lmod 19314  df-assa 19762
This theorem is referenced by:  assamulgscm  19806
  Copyright terms: Public domain W3C validator