Proof of Theorem assamulgscmlem2
Step | Hyp | Ref
| Expression |
1 | | assaring 20978 |
. . . . . . . 8
⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) |
2 | | assamulgscm.h |
. . . . . . . . 9
⊢ 𝐻 = (mulGrp‘𝑊) |
3 | 2 | ringmgp 19704 |
. . . . . . . 8
⊢ (𝑊 ∈ Ring → 𝐻 ∈ Mnd) |
4 | 1, 3 | syl 17 |
. . . . . . 7
⊢ (𝑊 ∈ AssAlg → 𝐻 ∈ Mnd) |
5 | 4 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐻 ∈ Mnd) |
6 | 5 | adantl 481 |
. . . . 5
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐻 ∈ Mnd) |
7 | 6 | adantr 480 |
. . . 4
⊢ (((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 ↑ 𝐴) · (𝑦𝐸𝑋))) → 𝐻 ∈ Mnd) |
8 | | simpll 763 |
. . . 4
⊢ (((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 ↑ 𝐴) · (𝑦𝐸𝑋))) → 𝑦 ∈ ℕ0) |
9 | | assalmod 20977 |
. . . . . . . 8
⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) |
10 | 9 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑊 ∈ LMod) |
11 | | simpll 763 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴 ∈ 𝐵) |
12 | | simplr 765 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑋 ∈ 𝑉) |
13 | | assamulgscm.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
14 | | assamulgscm.f |
. . . . . . . 8
⊢ 𝐹 = (Scalar‘𝑊) |
15 | | assamulgscm.s |
. . . . . . . 8
⊢ · = (
·𝑠 ‘𝑊) |
16 | | assamulgscm.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐹) |
17 | 13, 14, 15, 16 | lmodvscl 20055 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
18 | 10, 11, 12, 17 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (𝐴 · 𝑋) ∈ 𝑉) |
19 | 18 | adantl 481 |
. . . . 5
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝐴 · 𝑋) ∈ 𝑉) |
20 | 19 | adantr 480 |
. . . 4
⊢ (((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 ↑ 𝐴) · (𝑦𝐸𝑋))) → (𝐴 · 𝑋) ∈ 𝑉) |
21 | 2, 13 | mgpbas 19641 |
. . . . 5
⊢ 𝑉 = (Base‘𝐻) |
22 | | assamulgscm.e |
. . . . 5
⊢ 𝐸 = (.g‘𝐻) |
23 | | eqid 2738 |
. . . . . 6
⊢
(.r‘𝑊) = (.r‘𝑊) |
24 | 2, 23 | mgpplusg 19639 |
. . . . 5
⊢
(.r‘𝑊) = (+g‘𝐻) |
25 | 21, 22, 24 | mulgnn0p1 18630 |
. . . 4
⊢ ((𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ (𝐴 · 𝑋) ∈ 𝑉) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = ((𝑦𝐸(𝐴 · 𝑋))(.r‘𝑊)(𝐴 · 𝑋))) |
26 | 7, 8, 20, 25 | syl3anc 1369 |
. . 3
⊢ (((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 ↑ 𝐴) · (𝑦𝐸𝑋))) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = ((𝑦𝐸(𝐴 · 𝑋))(.r‘𝑊)(𝐴 · 𝑋))) |
27 | | oveq1 7262 |
. . . 4
⊢ ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 ↑ 𝐴) · (𝑦𝐸𝑋)) → ((𝑦𝐸(𝐴 · 𝑋))(.r‘𝑊)(𝐴 · 𝑋)) = (((𝑦 ↑ 𝐴) · (𝑦𝐸𝑋))(.r‘𝑊)(𝐴 · 𝑋))) |
28 | | simprr 769 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑊 ∈ AssAlg) |
29 | 14 | assasca 20979 |
. . . . . . . . . 10
⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ CRing) |
30 | | crngring 19710 |
. . . . . . . . . 10
⊢ (𝐹 ∈ CRing → 𝐹 ∈ Ring) |
31 | | assamulgscm.g |
. . . . . . . . . . 11
⊢ 𝐺 = (mulGrp‘𝐹) |
32 | 31 | ringmgp 19704 |
. . . . . . . . . 10
⊢ (𝐹 ∈ Ring → 𝐺 ∈ Mnd) |
33 | 29, 30, 32 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑊 ∈ AssAlg → 𝐺 ∈ Mnd) |
34 | 33 | adantl 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐺 ∈ Mnd) |
35 | 34 | adantl 481 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐺 ∈ Mnd) |
36 | | simpl 482 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑦 ∈ ℕ0) |
37 | 16 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ AssAlg → 𝐵 = (Base‘𝐹)) |
38 | 14 | fveq2i 6759 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐹) =
(Base‘(Scalar‘𝑊)) |
39 | 37, 38 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ AssAlg → 𝐵 =
(Base‘(Scalar‘𝑊))) |
40 | 39 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ AssAlg → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ (Base‘(Scalar‘𝑊)))) |
41 | 40 | biimpcd 248 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝐵 → (𝑊 ∈ AssAlg → 𝐴 ∈ (Base‘(Scalar‘𝑊)))) |
42 | 41 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑊 ∈ AssAlg → 𝐴 ∈ (Base‘(Scalar‘𝑊)))) |
43 | 42 | imp 406 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴 ∈ (Base‘(Scalar‘𝑊))) |
44 | 43 | adantl 481 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐴 ∈ (Base‘(Scalar‘𝑊))) |
45 | 14 | eqcomi 2747 |
. . . . . . . . . 10
⊢
(Scalar‘𝑊) =
𝐹 |
46 | 45 | fveq2i 6759 |
. . . . . . . . 9
⊢
(Base‘(Scalar‘𝑊)) = (Base‘𝐹) |
47 | 31, 46 | mgpbas 19641 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝑊)) = (Base‘𝐺) |
48 | | assamulgscm.p |
. . . . . . . 8
⊢ ↑ =
(.g‘𝐺) |
49 | 47, 48 | mulgnn0cl 18635 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝐴 ∈
(Base‘(Scalar‘𝑊))) → (𝑦 ↑ 𝐴) ∈ (Base‘(Scalar‘𝑊))) |
50 | 35, 36, 44, 49 | syl3anc 1369 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦 ↑ 𝐴) ∈ (Base‘(Scalar‘𝑊))) |
51 | | simprlr 776 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑋 ∈ 𝑉) |
52 | 21, 22 | mulgnn0cl 18635 |
. . . . . . 7
⊢ ((𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝑉) → (𝑦𝐸𝑋) ∈ 𝑉) |
53 | 6, 36, 51, 52 | syl3anc 1369 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦𝐸𝑋) ∈ 𝑉) |
54 | | eqid 2738 |
. . . . . . 7
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
55 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
56 | 13, 54, 55, 15, 23 | assaass 20975 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ ((𝑦 ↑ 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑦𝐸𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑋) ∈ 𝑉)) → (((𝑦 ↑ 𝐴) · (𝑦𝐸𝑋))(.r‘𝑊)(𝐴 · 𝑋)) = ((𝑦 ↑ 𝐴) · ((𝑦𝐸𝑋)(.r‘𝑊)(𝐴 · 𝑋)))) |
57 | 28, 50, 53, 19, 56 | syl13anc 1370 |
. . . . 5
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 ↑ 𝐴) · (𝑦𝐸𝑋))(.r‘𝑊)(𝐴 · 𝑋)) = ((𝑦 ↑ 𝐴) · ((𝑦𝐸𝑋)(.r‘𝑊)(𝐴 · 𝑋)))) |
58 | 13, 54, 55, 15, 23 | assaassr 20976 |
. . . . . . . 8
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈
(Base‘(Scalar‘𝑊)) ∧ (𝑦𝐸𝑋) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑦𝐸𝑋)(.r‘𝑊)(𝐴 · 𝑋)) = (𝐴 · ((𝑦𝐸𝑋)(.r‘𝑊)𝑋))) |
59 | 28, 44, 53, 51, 58 | syl13anc 1370 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦𝐸𝑋)(.r‘𝑊)(𝐴 · 𝑋)) = (𝐴 · ((𝑦𝐸𝑋)(.r‘𝑊)𝑋))) |
60 | 59 | oveq2d 7271 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 ↑ 𝐴) · ((𝑦𝐸𝑋)(.r‘𝑊)(𝐴 · 𝑋))) = ((𝑦 ↑ 𝐴) · (𝐴 · ((𝑦𝐸𝑋)(.r‘𝑊)𝑋)))) |
61 | 21, 22, 24 | mulgnn0p1 18630 |
. . . . . . . . . 10
⊢ ((𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝑉) → ((𝑦 + 1)𝐸𝑋) = ((𝑦𝐸𝑋)(.r‘𝑊)𝑋)) |
62 | 6, 36, 51, 61 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1)𝐸𝑋) = ((𝑦𝐸𝑋)(.r‘𝑊)𝑋)) |
63 | 62 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦𝐸𝑋)(.r‘𝑊)𝑋) = ((𝑦 + 1)𝐸𝑋)) |
64 | 63 | oveq2d 7271 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝐴 · ((𝑦𝐸𝑋)(.r‘𝑊)𝑋)) = (𝐴 · ((𝑦 + 1)𝐸𝑋))) |
65 | 64 | oveq2d 7271 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 ↑ 𝐴) · (𝐴 · ((𝑦𝐸𝑋)(.r‘𝑊)𝑋))) = ((𝑦 ↑ 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋)))) |
66 | 10 | adantl 481 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑊 ∈ LMod) |
67 | | peano2nn0 12203 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 1) ∈
ℕ0) |
68 | 67 | adantr 480 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦 + 1) ∈
ℕ0) |
69 | 21, 22 | mulgnn0cl 18635 |
. . . . . . . 8
⊢ ((𝐻 ∈ Mnd ∧ (𝑦 + 1) ∈ ℕ0
∧ 𝑋 ∈ 𝑉) → ((𝑦 + 1)𝐸𝑋) ∈ 𝑉) |
70 | 6, 68, 51, 69 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1)𝐸𝑋) ∈ 𝑉) |
71 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘(Scalar‘𝑊)) =
(.r‘(Scalar‘𝑊)) |
72 | 13, 54, 15, 55, 71 | lmodvsass 20063 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ ((𝑦 ↑ 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)) → (((𝑦 ↑ 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)) = ((𝑦 ↑ 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋)))) |
73 | 72 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ ((𝑦 ↑ 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)) → ((𝑦 ↑ 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))) = (((𝑦 ↑ 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋))) |
74 | 66, 50, 44, 70, 73 | syl13anc 1370 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 ↑ 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))) = (((𝑦 ↑ 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋))) |
75 | 60, 65, 74 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 ↑ 𝐴) · ((𝑦𝐸𝑋)(.r‘𝑊)(𝐴 · 𝑋))) = (((𝑦 ↑ 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋))) |
76 | | simprll 775 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐴 ∈ 𝐵) |
77 | 31, 16 | mgpbas 19641 |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐺) |
78 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(.r‘𝐹) = (.r‘𝐹) |
79 | 31, 78 | mgpplusg 19639 |
. . . . . . . . . 10
⊢
(.r‘𝐹) = (+g‘𝐺) |
80 | 77, 48, 79 | mulgnn0p1 18630 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝐴 ∈ 𝐵) → ((𝑦 + 1) ↑ 𝐴) = ((𝑦 ↑ 𝐴)(.r‘𝐹)𝐴)) |
81 | 35, 36, 76, 80 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1) ↑ 𝐴) = ((𝑦 ↑ 𝐴)(.r‘𝐹)𝐴)) |
82 | 14 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐹 = (Scalar‘𝑊)) |
83 | 82 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) →
(.r‘𝐹) =
(.r‘(Scalar‘𝑊))) |
84 | 83 | oveqd 7272 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 ↑ 𝐴)(.r‘𝐹)𝐴) = ((𝑦 ↑ 𝐴)(.r‘(Scalar‘𝑊))𝐴)) |
85 | 81, 84 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1) ↑ 𝐴) = ((𝑦 ↑ 𝐴)(.r‘(Scalar‘𝑊))𝐴)) |
86 | 85 | eqcomd 2744 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 ↑ 𝐴)(.r‘(Scalar‘𝑊))𝐴) = ((𝑦 + 1) ↑ 𝐴)) |
87 | 86 | oveq1d 7270 |
. . . . 5
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 ↑ 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)) = (((𝑦 + 1) ↑ 𝐴) · ((𝑦 + 1)𝐸𝑋))) |
88 | 57, 75, 87 | 3eqtrd 2782 |
. . . 4
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 ↑ 𝐴) · (𝑦𝐸𝑋))(.r‘𝑊)(𝐴 · 𝑋)) = (((𝑦 + 1) ↑ 𝐴) · ((𝑦 + 1)𝐸𝑋))) |
89 | 27, 88 | sylan9eqr 2801 |
. . 3
⊢ (((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 ↑ 𝐴) · (𝑦𝐸𝑋))) → ((𝑦𝐸(𝐴 · 𝑋))(.r‘𝑊)(𝐴 · 𝑋)) = (((𝑦 + 1) ↑ 𝐴) · ((𝑦 + 1)𝐸𝑋))) |
90 | 26, 89 | eqtrd 2778 |
. 2
⊢ (((𝑦 ∈ ℕ0
∧ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 ↑ 𝐴) · (𝑦𝐸𝑋))) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) ↑ 𝐴) · ((𝑦 + 1)𝐸𝑋))) |
91 | 90 | exp31 419 |
1
⊢ (𝑦 ∈ ℕ0
→ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 ↑ 𝐴) · (𝑦𝐸𝑋)) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) ↑ 𝐴) · ((𝑦 + 1)𝐸𝑋))))) |