MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assamulgscmlem2 Structured version   Visualization version   GIF version

Theorem assamulgscmlem2 21943
Description: Lemma for assamulgscm 21944 (induction step). (Contributed by AV, 26-Aug-2019.)
Hypotheses
Ref Expression
assamulgscm.v 𝑉 = (Base‘𝑊)
assamulgscm.f 𝐹 = (Scalar‘𝑊)
assamulgscm.b 𝐵 = (Base‘𝐹)
assamulgscm.s · = ( ·𝑠𝑊)
assamulgscm.g 𝐺 = (mulGrp‘𝐹)
assamulgscm.p = (.g𝐺)
assamulgscm.h 𝐻 = (mulGrp‘𝑊)
assamulgscm.e 𝐸 = (.g𝐻)
Assertion
Ref Expression
assamulgscmlem2 (𝑦 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))

Proof of Theorem assamulgscmlem2
StepHypRef Expression
1 assaring 21904 . . . . . . . 8 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
2 assamulgscm.h . . . . . . . . 9 𝐻 = (mulGrp‘𝑊)
32ringmgp 20266 . . . . . . . 8 (𝑊 ∈ Ring → 𝐻 ∈ Mnd)
41, 3syl 17 . . . . . . 7 (𝑊 ∈ AssAlg → 𝐻 ∈ Mnd)
54adantl 481 . . . . . 6 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐻 ∈ Mnd)
65adantl 481 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐻 ∈ Mnd)
76adantr 480 . . . 4 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → 𝐻 ∈ Mnd)
8 simpll 766 . . . 4 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → 𝑦 ∈ ℕ0)
9 assalmod 21903 . . . . . . . 8 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
109adantl 481 . . . . . . 7 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑊 ∈ LMod)
11 simpll 766 . . . . . . 7 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴𝐵)
12 simplr 768 . . . . . . 7 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑋𝑉)
13 assamulgscm.v . . . . . . . 8 𝑉 = (Base‘𝑊)
14 assamulgscm.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
15 assamulgscm.s . . . . . . . 8 · = ( ·𝑠𝑊)
16 assamulgscm.b . . . . . . . 8 𝐵 = (Base‘𝐹)
1713, 14, 15, 16lmodvscl 20898 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐴𝐵𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
1810, 11, 12, 17syl3anc 1371 . . . . . 6 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝐴 · 𝑋) ∈ 𝑉)
1918adantl 481 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝐴 · 𝑋) ∈ 𝑉)
2019adantr 480 . . . 4 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → (𝐴 · 𝑋) ∈ 𝑉)
212, 13mgpbas 20167 . . . . 5 𝑉 = (Base‘𝐻)
22 assamulgscm.e . . . . 5 𝐸 = (.g𝐻)
23 eqid 2740 . . . . . 6 (.r𝑊) = (.r𝑊)
242, 23mgpplusg 20165 . . . . 5 (.r𝑊) = (+g𝐻)
2521, 22, 24mulgnn0p1 19125 . . . 4 ((𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ (𝐴 · 𝑋) ∈ 𝑉) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)))
267, 8, 20, 25syl3anc 1371 . . 3 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)))
27 oveq1 7455 . . . 4 ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)) = (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)))
28 simprr 772 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑊 ∈ AssAlg)
29 assamulgscm.g . . . . . . . 8 𝐺 = (mulGrp‘𝐹)
3014eqcomi 2749 . . . . . . . . 9 (Scalar‘𝑊) = 𝐹
3130fveq2i 6923 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘𝐹)
3229, 31mgpbas 20167 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘𝐺)
33 assamulgscm.p . . . . . . 7 = (.g𝐺)
3414assasca 21905 . . . . . . . . . 10 (𝑊 ∈ AssAlg → 𝐹 ∈ Ring)
3529ringmgp 20266 . . . . . . . . . 10 (𝐹 ∈ Ring → 𝐺 ∈ Mnd)
3634, 35syl 17 . . . . . . . . 9 (𝑊 ∈ AssAlg → 𝐺 ∈ Mnd)
3736adantl 481 . . . . . . . 8 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐺 ∈ Mnd)
3837adantl 481 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐺 ∈ Mnd)
39 simpl 482 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑦 ∈ ℕ0)
4016a1i 11 . . . . . . . . . . . . 13 (𝑊 ∈ AssAlg → 𝐵 = (Base‘𝐹))
4114fveq2i 6923 . . . . . . . . . . . . 13 (Base‘𝐹) = (Base‘(Scalar‘𝑊))
4240, 41eqtrdi 2796 . . . . . . . . . . . 12 (𝑊 ∈ AssAlg → 𝐵 = (Base‘(Scalar‘𝑊)))
4342eleq2d 2830 . . . . . . . . . . 11 (𝑊 ∈ AssAlg → (𝐴𝐵𝐴 ∈ (Base‘(Scalar‘𝑊))))
4443biimpcd 249 . . . . . . . . . 10 (𝐴𝐵 → (𝑊 ∈ AssAlg → 𝐴 ∈ (Base‘(Scalar‘𝑊))))
4544adantr 480 . . . . . . . . 9 ((𝐴𝐵𝑋𝑉) → (𝑊 ∈ AssAlg → 𝐴 ∈ (Base‘(Scalar‘𝑊))))
4645imp 406 . . . . . . . 8 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴 ∈ (Base‘(Scalar‘𝑊)))
4746adantl 481 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐴 ∈ (Base‘(Scalar‘𝑊)))
4832, 33, 38, 39, 47mulgnn0cld 19135 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)))
49 simprlr 779 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑋𝑉)
5021, 22, 6, 39, 49mulgnn0cld 19135 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦𝐸𝑋) ∈ 𝑉)
51 eqid 2740 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
52 eqid 2740 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
5313, 51, 52, 15, 23assaass 21901 . . . . . 6 ((𝑊 ∈ AssAlg ∧ ((𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑦𝐸𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑋) ∈ 𝑉)) → (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)) = ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))))
5428, 48, 50, 19, 53syl13anc 1372 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)) = ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))))
5513, 51, 52, 15, 23assaassr 21902 . . . . . . . 8 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑦𝐸𝑋) ∈ 𝑉𝑋𝑉)) → ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋)) = (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋)))
5628, 47, 50, 49, 55syl13anc 1372 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋)) = (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋)))
5756oveq2d 7464 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))) = ((𝑦 𝐴) · (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋))))
5821, 22, 24mulgnn0p1 19125 . . . . . . . . . 10 ((𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝑉) → ((𝑦 + 1)𝐸𝑋) = ((𝑦𝐸𝑋)(.r𝑊)𝑋))
596, 39, 49, 58syl3anc 1371 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1)𝐸𝑋) = ((𝑦𝐸𝑋)(.r𝑊)𝑋))
6059eqcomd 2746 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦𝐸𝑋)(.r𝑊)𝑋) = ((𝑦 + 1)𝐸𝑋))
6160oveq2d 7464 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋)) = (𝐴 · ((𝑦 + 1)𝐸𝑋)))
6261oveq2d 7464 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋))) = ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))))
6310adantl 481 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑊 ∈ LMod)
64 peano2nn0 12593 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
6564adantr 480 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦 + 1) ∈ ℕ0)
6621, 22, 6, 65, 49mulgnn0cld 19135 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)
67 eqid 2740 . . . . . . . . 9 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
6813, 51, 15, 52, 67lmodvsass 20907 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)) → (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)) = ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))))
6968eqcomd 2746 . . . . . . 7 ((𝑊 ∈ LMod ∧ ((𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)) → ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))) = (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)))
7063, 48, 47, 66, 69syl13anc 1372 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))) = (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)))
7157, 62, 703eqtrd 2784 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))) = (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)))
72 simprll 778 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐴𝐵)
7329, 16mgpbas 20167 . . . . . . . . . 10 𝐵 = (Base‘𝐺)
74 eqid 2740 . . . . . . . . . . 11 (.r𝐹) = (.r𝐹)
7529, 74mgpplusg 20165 . . . . . . . . . 10 (.r𝐹) = (+g𝐺)
7673, 33, 75mulgnn0p1 19125 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐴𝐵) → ((𝑦 + 1) 𝐴) = ((𝑦 𝐴)(.r𝐹)𝐴))
7738, 39, 72, 76syl3anc 1371 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1) 𝐴) = ((𝑦 𝐴)(.r𝐹)𝐴))
7814a1i 11 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐹 = (Scalar‘𝑊))
7978fveq2d 6924 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (.r𝐹) = (.r‘(Scalar‘𝑊)))
8079oveqd 7465 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴)(.r𝐹)𝐴) = ((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴))
8177, 80eqtrd 2780 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1) 𝐴) = ((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴))
8281eqcomd 2746 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) = ((𝑦 + 1) 𝐴))
8382oveq1d 7463 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
8454, 71, 833eqtrd 2784 . . . 4 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
8527, 84sylan9eqr 2802 . . 3 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
8626, 85eqtrd 2780 . 2 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
8786exp31 419 1 (𝑦 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  1c1 11185   + caddc 11187  0cn0 12553  Basecbs 17258  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  Mndcmnd 18772  .gcmg 19107  mulGrpcmgp 20161  Ringcrg 20260  LModclmod 20880  AssAlgcasa 21893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mulg 19108  df-mgp 20162  df-ring 20262  df-lmod 20882  df-assa 21896
This theorem is referenced by:  assamulgscm  21944
  Copyright terms: Public domain W3C validator