MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assamulgscmlem2 Structured version   Visualization version   GIF version

Theorem assamulgscmlem2 21303
Description: Lemma for assamulgscm 21304 (induction step). (Contributed by AV, 26-Aug-2019.)
Hypotheses
Ref Expression
assamulgscm.v 𝑉 = (Base‘𝑊)
assamulgscm.f 𝐹 = (Scalar‘𝑊)
assamulgscm.b 𝐵 = (Base‘𝐹)
assamulgscm.s · = ( ·𝑠𝑊)
assamulgscm.g 𝐺 = (mulGrp‘𝐹)
assamulgscm.p = (.g𝐺)
assamulgscm.h 𝐻 = (mulGrp‘𝑊)
assamulgscm.e 𝐸 = (.g𝐻)
Assertion
Ref Expression
assamulgscmlem2 (𝑦 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))

Proof of Theorem assamulgscmlem2
StepHypRef Expression
1 assaring 21267 . . . . . . . 8 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
2 assamulgscm.h . . . . . . . . 9 𝐻 = (mulGrp‘𝑊)
32ringmgp 19970 . . . . . . . 8 (𝑊 ∈ Ring → 𝐻 ∈ Mnd)
41, 3syl 17 . . . . . . 7 (𝑊 ∈ AssAlg → 𝐻 ∈ Mnd)
54adantl 482 . . . . . 6 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐻 ∈ Mnd)
65adantl 482 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐻 ∈ Mnd)
76adantr 481 . . . 4 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → 𝐻 ∈ Mnd)
8 simpll 765 . . . 4 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → 𝑦 ∈ ℕ0)
9 assalmod 21266 . . . . . . . 8 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
109adantl 482 . . . . . . 7 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑊 ∈ LMod)
11 simpll 765 . . . . . . 7 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴𝐵)
12 simplr 767 . . . . . . 7 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑋𝑉)
13 assamulgscm.v . . . . . . . 8 𝑉 = (Base‘𝑊)
14 assamulgscm.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
15 assamulgscm.s . . . . . . . 8 · = ( ·𝑠𝑊)
16 assamulgscm.b . . . . . . . 8 𝐵 = (Base‘𝐹)
1713, 14, 15, 16lmodvscl 20339 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐴𝐵𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
1810, 11, 12, 17syl3anc 1371 . . . . . 6 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝐴 · 𝑋) ∈ 𝑉)
1918adantl 482 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝐴 · 𝑋) ∈ 𝑉)
2019adantr 481 . . . 4 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → (𝐴 · 𝑋) ∈ 𝑉)
212, 13mgpbas 19902 . . . . 5 𝑉 = (Base‘𝐻)
22 assamulgscm.e . . . . 5 𝐸 = (.g𝐻)
23 eqid 2736 . . . . . 6 (.r𝑊) = (.r𝑊)
242, 23mgpplusg 19900 . . . . 5 (.r𝑊) = (+g𝐻)
2521, 22, 24mulgnn0p1 18887 . . . 4 ((𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ (𝐴 · 𝑋) ∈ 𝑉) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)))
267, 8, 20, 25syl3anc 1371 . . 3 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)))
27 oveq1 7364 . . . 4 ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)) = (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)))
28 simprr 771 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑊 ∈ AssAlg)
29 assamulgscm.g . . . . . . . 8 𝐺 = (mulGrp‘𝐹)
3014eqcomi 2745 . . . . . . . . 9 (Scalar‘𝑊) = 𝐹
3130fveq2i 6845 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘𝐹)
3229, 31mgpbas 19902 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘𝐺)
33 assamulgscm.p . . . . . . 7 = (.g𝐺)
3414assasca 21268 . . . . . . . . . 10 (𝑊 ∈ AssAlg → 𝐹 ∈ CRing)
35 crngring 19976 . . . . . . . . . 10 (𝐹 ∈ CRing → 𝐹 ∈ Ring)
3629ringmgp 19970 . . . . . . . . . 10 (𝐹 ∈ Ring → 𝐺 ∈ Mnd)
3734, 35, 363syl 18 . . . . . . . . 9 (𝑊 ∈ AssAlg → 𝐺 ∈ Mnd)
3837adantl 482 . . . . . . . 8 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐺 ∈ Mnd)
3938adantl 482 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐺 ∈ Mnd)
40 simpl 483 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑦 ∈ ℕ0)
4116a1i 11 . . . . . . . . . . . . 13 (𝑊 ∈ AssAlg → 𝐵 = (Base‘𝐹))
4214fveq2i 6845 . . . . . . . . . . . . 13 (Base‘𝐹) = (Base‘(Scalar‘𝑊))
4341, 42eqtrdi 2792 . . . . . . . . . . . 12 (𝑊 ∈ AssAlg → 𝐵 = (Base‘(Scalar‘𝑊)))
4443eleq2d 2823 . . . . . . . . . . 11 (𝑊 ∈ AssAlg → (𝐴𝐵𝐴 ∈ (Base‘(Scalar‘𝑊))))
4544biimpcd 248 . . . . . . . . . 10 (𝐴𝐵 → (𝑊 ∈ AssAlg → 𝐴 ∈ (Base‘(Scalar‘𝑊))))
4645adantr 481 . . . . . . . . 9 ((𝐴𝐵𝑋𝑉) → (𝑊 ∈ AssAlg → 𝐴 ∈ (Base‘(Scalar‘𝑊))))
4746imp 407 . . . . . . . 8 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴 ∈ (Base‘(Scalar‘𝑊)))
4847adantl 482 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐴 ∈ (Base‘(Scalar‘𝑊)))
4932, 33, 39, 40, 48mulgnn0cld 18897 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)))
50 simprlr 778 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑋𝑉)
5121, 22, 6, 40, 50mulgnn0cld 18897 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦𝐸𝑋) ∈ 𝑉)
52 eqid 2736 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
53 eqid 2736 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
5413, 52, 53, 15, 23assaass 21264 . . . . . 6 ((𝑊 ∈ AssAlg ∧ ((𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑦𝐸𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑋) ∈ 𝑉)) → (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)) = ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))))
5528, 49, 51, 19, 54syl13anc 1372 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)) = ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))))
5613, 52, 53, 15, 23assaassr 21265 . . . . . . . 8 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑦𝐸𝑋) ∈ 𝑉𝑋𝑉)) → ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋)) = (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋)))
5728, 48, 51, 50, 56syl13anc 1372 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋)) = (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋)))
5857oveq2d 7373 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))) = ((𝑦 𝐴) · (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋))))
5921, 22, 24mulgnn0p1 18887 . . . . . . . . . 10 ((𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝑉) → ((𝑦 + 1)𝐸𝑋) = ((𝑦𝐸𝑋)(.r𝑊)𝑋))
606, 40, 50, 59syl3anc 1371 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1)𝐸𝑋) = ((𝑦𝐸𝑋)(.r𝑊)𝑋))
6160eqcomd 2742 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦𝐸𝑋)(.r𝑊)𝑋) = ((𝑦 + 1)𝐸𝑋))
6261oveq2d 7373 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋)) = (𝐴 · ((𝑦 + 1)𝐸𝑋)))
6362oveq2d 7373 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋))) = ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))))
6410adantl 482 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑊 ∈ LMod)
65 peano2nn0 12453 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
6665adantr 481 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦 + 1) ∈ ℕ0)
6721, 22, 6, 66, 50mulgnn0cld 18897 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)
68 eqid 2736 . . . . . . . . 9 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
6913, 52, 15, 53, 68lmodvsass 20347 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)) → (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)) = ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))))
7069eqcomd 2742 . . . . . . 7 ((𝑊 ∈ LMod ∧ ((𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)) → ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))) = (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)))
7164, 49, 48, 67, 70syl13anc 1372 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))) = (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)))
7258, 63, 713eqtrd 2780 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))) = (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)))
73 simprll 777 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐴𝐵)
7429, 16mgpbas 19902 . . . . . . . . . 10 𝐵 = (Base‘𝐺)
75 eqid 2736 . . . . . . . . . . 11 (.r𝐹) = (.r𝐹)
7629, 75mgpplusg 19900 . . . . . . . . . 10 (.r𝐹) = (+g𝐺)
7774, 33, 76mulgnn0p1 18887 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐴𝐵) → ((𝑦 + 1) 𝐴) = ((𝑦 𝐴)(.r𝐹)𝐴))
7839, 40, 73, 77syl3anc 1371 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1) 𝐴) = ((𝑦 𝐴)(.r𝐹)𝐴))
7914a1i 11 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐹 = (Scalar‘𝑊))
8079fveq2d 6846 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (.r𝐹) = (.r‘(Scalar‘𝑊)))
8180oveqd 7374 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴)(.r𝐹)𝐴) = ((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴))
8278, 81eqtrd 2776 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1) 𝐴) = ((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴))
8382eqcomd 2742 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) = ((𝑦 + 1) 𝐴))
8483oveq1d 7372 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
8555, 72, 843eqtrd 2780 . . . 4 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
8627, 85sylan9eqr 2798 . . 3 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
8726, 86eqtrd 2776 . 2 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
8887exp31 420 1 (𝑦 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cfv 6496  (class class class)co 7357  1c1 11052   + caddc 11054  0cn0 12413  Basecbs 17083  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  Mndcmnd 18556  .gcmg 18872  mulGrpcmgp 19896  Ringcrg 19964  CRingccrg 19965  LModclmod 20322  AssAlgcasa 21256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-seq 13907  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mulg 18873  df-mgp 19897  df-ring 19966  df-cring 19967  df-lmod 20324  df-assa 21259
This theorem is referenced by:  assamulgscm  21304
  Copyright terms: Public domain W3C validator