| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asclrhm | Structured version Visualization version GIF version | ||
| Description: The algebra scalar lifting function is a ring homomorphism. (Contributed by Mario Carneiro, 8-Mar-2015.) |
| Ref | Expression |
|---|---|
| asclrhm.a | ⊢ 𝐴 = (algSc‘𝑊) |
| asclrhm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| asclrhm | ⊢ (𝑊 ∈ AssAlg → 𝐴 ∈ (𝐹 RingHom 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 2 | eqid 2730 | . 2 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 3 | eqid 2730 | . 2 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
| 4 | eqid 2730 | . 2 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 5 | eqid 2730 | . 2 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
| 6 | asclrhm.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 7 | 6 | assasca 21778 | . 2 ⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ Ring) |
| 8 | assaring 21777 | . 2 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 9 | asclrhm.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
| 10 | assalmod 21776 | . . 3 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
| 11 | 9, 6, 10, 8 | ascl1 21801 | . 2 ⊢ (𝑊 ∈ AssAlg → (𝐴‘(1r‘𝐹)) = (1r‘𝑊)) |
| 12 | 9, 6, 1, 5, 4 | ascldimul 21804 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → (𝐴‘(𝑥(.r‘𝐹)𝑦)) = ((𝐴‘𝑥)(.r‘𝑊)(𝐴‘𝑦))) |
| 13 | 12 | 3expb 1120 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(.r‘𝐹)𝑦)) = ((𝐴‘𝑥)(.r‘𝑊)(𝐴‘𝑦))) |
| 14 | 9, 6, 8, 10 | asclghm 21799 | . 2 ⊢ (𝑊 ∈ AssAlg → 𝐴 ∈ (𝐹 GrpHom 𝑊)) |
| 15 | 1, 2, 3, 4, 5, 7, 8, 11, 13, 14 | isrhm2d 20403 | 1 ⊢ (𝑊 ∈ AssAlg → 𝐴 ∈ (𝐹 RingHom 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 Scalarcsca 17230 1rcur 20097 RingHom crh 20385 AssAlgcasa 21766 algSccascl 21768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-grp 18875 df-ghm 19152 df-mgp 20057 df-ur 20098 df-ring 20151 df-rhm 20388 df-lmod 20775 df-assa 21769 df-ascl 21771 |
| This theorem is referenced by: rnasclsubrg 21809 mplind 21984 evlslem1 21996 mpfind 22021 ply1fermltlchr 22206 pf1ind 22249 mat2pmatmul 22625 mat2pmatlin 22629 ply1asclunit 33550 ply1asclzrhval 42183 selvcllem2 42573 selvvvval 42580 evlselv 42582 |
| Copyright terms: Public domain | W3C validator |