Proof of Theorem assa2ass
Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑊 ∈ AssAlg) |
2 | | simpr 485 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
3 | 2 | 3ad2ant2 1133 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐶 ∈ 𝐵) |
4 | | assalmod 21067 |
. . . 4
⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) |
5 | | simpl 483 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝐴 ∈ 𝐵) |
6 | | simpl 483 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
7 | | assa2ass.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
8 | | assa2ass.f |
. . . . 5
⊢ 𝐹 = (Scalar‘𝑊) |
9 | | assa2ass.s |
. . . . 5
⊢ · = (
·𝑠 ‘𝑊) |
10 | | assa2ass.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐹) |
11 | 7, 8, 9, 10 | lmodvscl 20140 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
12 | 4, 5, 6, 11 | syl3an 1159 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · 𝑋) ∈ 𝑉) |
13 | | simpr 485 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) |
14 | 13 | 3ad2ant3 1134 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑌 ∈ 𝑉) |
15 | | assa2ass.t |
. . . 4
⊢ × =
(.r‘𝑊) |
16 | 7, 8, 10, 9, 15 | assaassr 21066 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐶 ∈ 𝐵 ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = (𝐶 · ((𝐴 · 𝑋) × 𝑌))) |
17 | 1, 3, 12, 14, 16 | syl13anc 1371 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = (𝐶 · ((𝐴 · 𝑋) × 𝑌))) |
18 | 7, 8, 10, 9, 15 | assaass 21065 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐶 ∈ 𝐵 ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐶 · (𝐴 · 𝑋)) × 𝑌) = (𝐶 · ((𝐴 · 𝑋) × 𝑌))) |
19 | 18 | eqcomd 2744 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐶 ∈ 𝐵 ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐶 · ((𝐴 · 𝑋) × 𝑌)) = ((𝐶 · (𝐴 · 𝑋)) × 𝑌)) |
20 | 1, 3, 12, 14, 19 | syl13anc 1371 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐶 · ((𝐴 · 𝑋) × 𝑌)) = ((𝐶 · (𝐴 · 𝑋)) × 𝑌)) |
21 | 4 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑊 ∈ LMod) |
22 | 5 | 3ad2ant2 1133 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐴 ∈ 𝐵) |
23 | 6 | 3ad2ant3 1134 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑋 ∈ 𝑉) |
24 | | assa2ass.m |
. . . . . . 7
⊢ ∗ =
(.r‘𝐹) |
25 | 7, 8, 9, 10, 24 | lmodvsass 20148 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝐶 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉)) → ((𝐶 ∗ 𝐴) · 𝑋) = (𝐶 · (𝐴 · 𝑋))) |
26 | 25 | eqcomd 2744 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝐶 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉)) → (𝐶 · (𝐴 · 𝑋)) = ((𝐶 ∗ 𝐴) · 𝑋)) |
27 | 26 | oveq1d 7290 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝐶 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉)) → ((𝐶 · (𝐴 · 𝑋)) × 𝑌) = (((𝐶 ∗ 𝐴) · 𝑋) × 𝑌)) |
28 | 21, 3, 22, 23, 27 | syl13anc 1371 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐶 · (𝐴 · 𝑋)) × 𝑌) = (((𝐶 ∗ 𝐴) · 𝑋) × 𝑌)) |
29 | 8 | assasca 21069 |
. . . . . . . 8
⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ CRing) |
30 | | crngring 19795 |
. . . . . . . 8
⊢ (𝐹 ∈ CRing → 𝐹 ∈ Ring) |
31 | 29, 30 | syl 17 |
. . . . . . 7
⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ Ring) |
32 | 31 | adantr 481 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐹 ∈ Ring) |
33 | 2 | adantl 482 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐶 ∈ 𝐵) |
34 | 5 | adantl 482 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐴 ∈ 𝐵) |
35 | 10, 24 | ringcl 19800 |
. . . . . 6
⊢ ((𝐹 ∈ Ring ∧ 𝐶 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐶 ∗ 𝐴) ∈ 𝐵) |
36 | 32, 33, 34, 35 | syl3anc 1370 |
. . . . 5
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (𝐶 ∗ 𝐴) ∈ 𝐵) |
37 | 36 | 3adant3 1131 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐶 ∗ 𝐴) ∈ 𝐵) |
38 | 7, 8, 10, 9, 15 | assaass 21065 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ ((𝐶 ∗ 𝐴) ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝐶 ∗ 𝐴) · 𝑋) × 𝑌) = ((𝐶 ∗ 𝐴) · (𝑋 × 𝑌))) |
39 | 1, 37, 23, 14, 38 | syl13anc 1371 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝐶 ∗ 𝐴) · 𝑋) × 𝑌) = ((𝐶 ∗ 𝐴) · (𝑋 × 𝑌))) |
40 | 28, 39 | eqtrd 2778 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐶 · (𝐴 · 𝑋)) × 𝑌) = ((𝐶 ∗ 𝐴) · (𝑋 × 𝑌))) |
41 | 17, 20, 40 | 3eqtrd 2782 |
1
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = ((𝐶 ∗ 𝐴) · (𝑋 × 𝑌))) |