Proof of Theorem assa2ass
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1136 | . . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑊 ∈ AssAlg) | 
| 2 |  | simpr 484 | . . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) | 
| 3 | 2 | 3ad2ant2 1134 | . . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐶 ∈ 𝐵) | 
| 4 |  | assalmod 21881 | . . . 4
⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | 
| 5 |  | simpl 482 | . . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝐴 ∈ 𝐵) | 
| 6 |  | simpl 482 | . . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑋 ∈ 𝑉) | 
| 7 |  | assa2ass.v | . . . . 5
⊢ 𝑉 = (Base‘𝑊) | 
| 8 |  | assa2ass.f | . . . . 5
⊢ 𝐹 = (Scalar‘𝑊) | 
| 9 |  | assa2ass.s | . . . . 5
⊢  · = (
·𝑠 ‘𝑊) | 
| 10 |  | assa2ass.b | . . . . 5
⊢ 𝐵 = (Base‘𝐹) | 
| 11 | 7, 8, 9, 10 | lmodvscl 20877 | . . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) | 
| 12 | 4, 5, 6, 11 | syl3an 1160 | . . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · 𝑋) ∈ 𝑉) | 
| 13 |  | simpr 484 | . . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) | 
| 14 | 13 | 3ad2ant3 1135 | . . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑌 ∈ 𝑉) | 
| 15 |  | assa2ass.t | . . . 4
⊢  × =
(.r‘𝑊) | 
| 16 | 7, 8, 10, 9, 15 | assaassr 21880 | . . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐶 ∈ 𝐵 ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = (𝐶 · ((𝐴 · 𝑋) × 𝑌))) | 
| 17 | 1, 3, 12, 14, 16 | syl13anc 1373 | . 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = (𝐶 · ((𝐴 · 𝑋) × 𝑌))) | 
| 18 | 7, 8, 10, 9, 15 | assaass 21879 | . . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐶 ∈ 𝐵 ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐶 · (𝐴 · 𝑋)) × 𝑌) = (𝐶 · ((𝐴 · 𝑋) × 𝑌))) | 
| 19 | 18 | eqcomd 2742 | . . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐶 ∈ 𝐵 ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐶 · ((𝐴 · 𝑋) × 𝑌)) = ((𝐶 · (𝐴 · 𝑋)) × 𝑌)) | 
| 20 | 1, 3, 12, 14, 19 | syl13anc 1373 | . 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐶 · ((𝐴 · 𝑋) × 𝑌)) = ((𝐶 · (𝐴 · 𝑋)) × 𝑌)) | 
| 21 | 4 | 3ad2ant1 1133 | . . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑊 ∈ LMod) | 
| 22 | 5 | 3ad2ant2 1134 | . . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐴 ∈ 𝐵) | 
| 23 | 6 | 3ad2ant3 1135 | . . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑋 ∈ 𝑉) | 
| 24 |  | assa2ass.m | . . . . . . 7
⊢  ∗ =
(.r‘𝐹) | 
| 25 | 7, 8, 9, 10, 24 | lmodvsass 20886 | . . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝐶 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉)) → ((𝐶 ∗ 𝐴) · 𝑋) = (𝐶 · (𝐴 · 𝑋))) | 
| 26 | 25 | eqcomd 2742 | . . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝐶 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉)) → (𝐶 · (𝐴 · 𝑋)) = ((𝐶 ∗ 𝐴) · 𝑋)) | 
| 27 | 26 | oveq1d 7447 | . . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝐶 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉)) → ((𝐶 · (𝐴 · 𝑋)) × 𝑌) = (((𝐶 ∗ 𝐴) · 𝑋) × 𝑌)) | 
| 28 | 21, 3, 22, 23, 27 | syl13anc 1373 | . . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐶 · (𝐴 · 𝑋)) × 𝑌) = (((𝐶 ∗ 𝐴) · 𝑋) × 𝑌)) | 
| 29 | 8 | assasca 21883 | . . . . . . 7
⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ Ring) | 
| 30 | 29 | adantr 480 | . . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐹 ∈ Ring) | 
| 31 | 2 | adantl 481 | . . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐶 ∈ 𝐵) | 
| 32 | 5 | adantl 481 | . . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐴 ∈ 𝐵) | 
| 33 | 10, 24, 30, 31, 32 | ringcld 20258 | . . . . 5
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (𝐶 ∗ 𝐴) ∈ 𝐵) | 
| 34 | 33 | 3adant3 1132 | . . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐶 ∗ 𝐴) ∈ 𝐵) | 
| 35 | 7, 8, 10, 9, 15 | assaass 21879 | . . . 4
⊢ ((𝑊 ∈ AssAlg ∧ ((𝐶 ∗ 𝐴) ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝐶 ∗ 𝐴) · 𝑋) × 𝑌) = ((𝐶 ∗ 𝐴) · (𝑋 × 𝑌))) | 
| 36 | 1, 34, 23, 14, 35 | syl13anc 1373 | . . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝐶 ∗ 𝐴) · 𝑋) × 𝑌) = ((𝐶 ∗ 𝐴) · (𝑋 × 𝑌))) | 
| 37 | 28, 36 | eqtrd 2776 | . 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐶 · (𝐴 · 𝑋)) × 𝑌) = ((𝐶 ∗ 𝐴) · (𝑋 × 𝑌))) | 
| 38 | 17, 20, 37 | 3eqtrd 2780 | 1
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = ((𝐶 ∗ 𝐴) · (𝑋 × 𝑌))) |