MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assa2ass Structured version   Visualization version   GIF version

Theorem assa2ass 20621
Description: Left- and right-associative property of an associative algebra. Notice that the scalars are commuted! (Contributed by AV, 14-Aug-2019.)
Hypotheses
Ref Expression
assa2ass.v 𝑉 = (Base‘𝑊)
assa2ass.f 𝐹 = (Scalar‘𝑊)
assa2ass.b 𝐵 = (Base‘𝐹)
assa2ass.m = (.r𝐹)
assa2ass.s · = ( ·𝑠𝑊)
assa2ass.t × = (.r𝑊)
Assertion
Ref Expression
assa2ass ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵) ∧ (𝑋𝑉𝑌𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = ((𝐶 𝐴) · (𝑋 × 𝑌)))

Proof of Theorem assa2ass
StepHypRef Expression
1 simp1 1134 . . 3 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵) ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ AssAlg)
2 simpr 489 . . . 4 ((𝐴𝐵𝐶𝐵) → 𝐶𝐵)
323ad2ant2 1132 . . 3 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵) ∧ (𝑋𝑉𝑌𝑉)) → 𝐶𝐵)
4 assalmod 20618 . . . 4 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
5 simpl 487 . . . 4 ((𝐴𝐵𝐶𝐵) → 𝐴𝐵)
6 simpl 487 . . . 4 ((𝑋𝑉𝑌𝑉) → 𝑋𝑉)
7 assa2ass.v . . . . 5 𝑉 = (Base‘𝑊)
8 assa2ass.f . . . . 5 𝐹 = (Scalar‘𝑊)
9 assa2ass.s . . . . 5 · = ( ·𝑠𝑊)
10 assa2ass.b . . . . 5 𝐵 = (Base‘𝐹)
117, 8, 9, 10lmodvscl 19712 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐵𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
124, 5, 6, 11syl3an 1158 . . 3 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵) ∧ (𝑋𝑉𝑌𝑉)) → (𝐴 · 𝑋) ∈ 𝑉)
13 simpr 489 . . . 4 ((𝑋𝑉𝑌𝑉) → 𝑌𝑉)
14133ad2ant3 1133 . . 3 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵) ∧ (𝑋𝑉𝑌𝑉)) → 𝑌𝑉)
15 assa2ass.t . . . 4 × = (.r𝑊)
167, 8, 10, 9, 15assaassr 20617 . . 3 ((𝑊 ∈ AssAlg ∧ (𝐶𝐵 ∧ (𝐴 · 𝑋) ∈ 𝑉𝑌𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = (𝐶 · ((𝐴 · 𝑋) × 𝑌)))
171, 3, 12, 14, 16syl13anc 1370 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵) ∧ (𝑋𝑉𝑌𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = (𝐶 · ((𝐴 · 𝑋) × 𝑌)))
187, 8, 10, 9, 15assaass 20616 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝐶𝐵 ∧ (𝐴 · 𝑋) ∈ 𝑉𝑌𝑉)) → ((𝐶 · (𝐴 · 𝑋)) × 𝑌) = (𝐶 · ((𝐴 · 𝑋) × 𝑌)))
1918eqcomd 2765 . . 3 ((𝑊 ∈ AssAlg ∧ (𝐶𝐵 ∧ (𝐴 · 𝑋) ∈ 𝑉𝑌𝑉)) → (𝐶 · ((𝐴 · 𝑋) × 𝑌)) = ((𝐶 · (𝐴 · 𝑋)) × 𝑌))
201, 3, 12, 14, 19syl13anc 1370 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵) ∧ (𝑋𝑉𝑌𝑉)) → (𝐶 · ((𝐴 · 𝑋) × 𝑌)) = ((𝐶 · (𝐴 · 𝑋)) × 𝑌))
2143ad2ant1 1131 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵) ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ LMod)
2253ad2ant2 1132 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵) ∧ (𝑋𝑉𝑌𝑉)) → 𝐴𝐵)
2363ad2ant3 1133 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵) ∧ (𝑋𝑉𝑌𝑉)) → 𝑋𝑉)
24 assa2ass.m . . . . . . 7 = (.r𝐹)
257, 8, 9, 10, 24lmodvsass 19720 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐶𝐵𝐴𝐵𝑋𝑉)) → ((𝐶 𝐴) · 𝑋) = (𝐶 · (𝐴 · 𝑋)))
2625eqcomd 2765 . . . . 5 ((𝑊 ∈ LMod ∧ (𝐶𝐵𝐴𝐵𝑋𝑉)) → (𝐶 · (𝐴 · 𝑋)) = ((𝐶 𝐴) · 𝑋))
2726oveq1d 7166 . . . 4 ((𝑊 ∈ LMod ∧ (𝐶𝐵𝐴𝐵𝑋𝑉)) → ((𝐶 · (𝐴 · 𝑋)) × 𝑌) = (((𝐶 𝐴) · 𝑋) × 𝑌))
2821, 3, 22, 23, 27syl13anc 1370 . . 3 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵) ∧ (𝑋𝑉𝑌𝑉)) → ((𝐶 · (𝐴 · 𝑋)) × 𝑌) = (((𝐶 𝐴) · 𝑋) × 𝑌))
298assasca 20620 . . . . . . . 8 (𝑊 ∈ AssAlg → 𝐹 ∈ CRing)
30 crngring 19370 . . . . . . . 8 (𝐹 ∈ CRing → 𝐹 ∈ Ring)
3129, 30syl 17 . . . . . . 7 (𝑊 ∈ AssAlg → 𝐹 ∈ Ring)
3231adantr 485 . . . . . 6 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵)) → 𝐹 ∈ Ring)
332adantl 486 . . . . . 6 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵)) → 𝐶𝐵)
345adantl 486 . . . . . 6 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵)) → 𝐴𝐵)
3510, 24ringcl 19375 . . . . . 6 ((𝐹 ∈ Ring ∧ 𝐶𝐵𝐴𝐵) → (𝐶 𝐴) ∈ 𝐵)
3632, 33, 34, 35syl3anc 1369 . . . . 5 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵)) → (𝐶 𝐴) ∈ 𝐵)
37363adant3 1130 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵) ∧ (𝑋𝑉𝑌𝑉)) → (𝐶 𝐴) ∈ 𝐵)
387, 8, 10, 9, 15assaass 20616 . . . 4 ((𝑊 ∈ AssAlg ∧ ((𝐶 𝐴) ∈ 𝐵𝑋𝑉𝑌𝑉)) → (((𝐶 𝐴) · 𝑋) × 𝑌) = ((𝐶 𝐴) · (𝑋 × 𝑌)))
391, 37, 23, 14, 38syl13anc 1370 . . 3 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵) ∧ (𝑋𝑉𝑌𝑉)) → (((𝐶 𝐴) · 𝑋) × 𝑌) = ((𝐶 𝐴) · (𝑋 × 𝑌)))
4028, 39eqtrd 2794 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵) ∧ (𝑋𝑉𝑌𝑉)) → ((𝐶 · (𝐴 · 𝑋)) × 𝑌) = ((𝐶 𝐴) · (𝑋 × 𝑌)))
4117, 20, 403eqtrd 2798 1 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵) ∧ (𝑋𝑉𝑌𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = ((𝐶 𝐴) · (𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112  cfv 6336  (class class class)co 7151  Basecbs 16534  .rcmulr 16617  Scalarcsca 16619   ·𝑠 cvsca 16620  Ringcrg 19358  CRingccrg 19359  LModclmod 19695  AssAlgcasa 20608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-2 11730  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-plusg 16629  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-mgp 19301  df-ring 19360  df-cring 19361  df-lmod 19697  df-assa 20611
This theorem is referenced by:  cpmadugsumlemB  21567
  Copyright terms: Public domain W3C validator