MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assalmod Structured version   Visualization version   GIF version

Theorem assalmod 21078
Description: An associative algebra is a left module. (Contributed by Mario Carneiro, 5-Dec-2014.)
Assertion
Ref Expression
assalmod (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)

Proof of Theorem assalmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2740 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2740 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4 eqid 2740 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
5 eqid 2740 . . . 4 (.r𝑊) = (.r𝑊)
61, 2, 3, 4, 5isassa 21074 . . 3 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈ CRing) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑧( ·𝑠𝑊)𝑦)) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
76simplbi 498 . 2 (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈ CRing))
87simp1d 1141 1 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wral 3066  cfv 6432  (class class class)co 7272  Basecbs 16923  .rcmulr 16974  Scalarcsca 16976   ·𝑠 cvsca 16977  Ringcrg 19794  CRingccrg 19795  LModclmod 20134  AssAlgcasa 21068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-nul 5234
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-iota 6390  df-fv 6440  df-ov 7275  df-assa 21071
This theorem is referenced by:  assa2ass  21081  issubassa3  21083  issubassa  21084  assapropd  21087  aspval  21088  asplss  21089  ascldimul  21103  asclrhm  21105  rnascl  21106  issubassa2  21107  aspval2  21113  assamulgscmlem1  21114  assamulgscmlem2  21115  mplmon2mul  21288  mplind  21289  matinv  21837  asclmulg  31675  selvval2lem4  40237  assaascl0  45699  assaascl1  45700
  Copyright terms: Public domain W3C validator