MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assalmod Structured version   Visualization version   GIF version

Theorem assalmod 21825
Description: An associative algebra is a left module. (Contributed by Mario Carneiro, 5-Dec-2014.)
Assertion
Ref Expression
assalmod (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)

Proof of Theorem assalmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2736 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2736 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4 eqid 2736 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
5 eqid 2736 . . . 4 (.r𝑊) = (.r𝑊)
61, 2, 3, 4, 5isassa 21821 . . 3 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑧( ·𝑠𝑊)𝑦)) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
76simplbi 497 . 2 (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring))
87simpld 494 1 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  cfv 6536  (class class class)co 7410  Basecbs 17233  .rcmulr 17277  Scalarcsca 17279   ·𝑠 cvsca 17280  Ringcrg 20198  LModclmod 20822  AssAlgcasa 21815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-assa 21818
This theorem is referenced by:  assasca  21827  assa2ass  21828  assa2ass2  21829  issubassa3  21831  issubassa  21832  assapropd  21837  aspval  21838  asplss  21839  ascldimul  21853  asclrhm  21855  rnascl  21856  issubassa2  21857  aspval2  21863  assamulgscmlem1  21864  assamulgscmlem2  21865  asclmulg  21867  mplmon2mul  22032  mplind  22033  matinv  22620  lactlmhm  33679  assalactf1o  33680  assaascl0  48323  assaascl1  48324  asclelbas  48947  asclelbasALT  48948
  Copyright terms: Public domain W3C validator