MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assalmod Structured version   Visualization version   GIF version

Theorem assalmod 20977
Description: An associative algebra is a left module. (Contributed by Mario Carneiro, 5-Dec-2014.)
Assertion
Ref Expression
assalmod (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)

Proof of Theorem assalmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2738 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2738 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4 eqid 2738 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
5 eqid 2738 . . . 4 (.r𝑊) = (.r𝑊)
61, 2, 3, 4, 5isassa 20973 . . 3 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈ CRing) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑧( ·𝑠𝑊)𝑦)) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
76simplbi 497 . 2 (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈ CRing))
87simp1d 1140 1 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  Ringcrg 19698  CRingccrg 19699  LModclmod 20038  AssAlgcasa 20967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-assa 20970
This theorem is referenced by:  assa2ass  20980  issubassa3  20982  issubassa  20983  assapropd  20986  aspval  20987  asplss  20988  ascldimul  21002  asclrhm  21004  rnascl  21005  issubassa2  21006  aspval2  21012  assamulgscmlem1  21013  assamulgscmlem2  21014  mplmon2mul  21187  mplind  21188  matinv  21734  asclmulg  31568  selvval2lem4  40154  assaascl0  45608  assaascl1  45609
  Copyright terms: Public domain W3C validator