MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assalmod Structured version   Visualization version   GIF version

Theorem assalmod 21799
Description: An associative algebra is a left module. (Contributed by Mario Carneiro, 5-Dec-2014.)
Assertion
Ref Expression
assalmod (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)

Proof of Theorem assalmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2733 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2733 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4 eqid 2733 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
5 eqid 2733 . . . 4 (.r𝑊) = (.r𝑊)
61, 2, 3, 4, 5isassa 21795 . . 3 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑧( ·𝑠𝑊)𝑦)) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
76simplbi 497 . 2 (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring))
87simpld 494 1 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  cfv 6486  (class class class)co 7352  Basecbs 17122  .rcmulr 17164  Scalarcsca 17166   ·𝑠 cvsca 17167  Ringcrg 20153  LModclmod 20795  AssAlgcasa 21789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355  df-assa 21792
This theorem is referenced by:  assasca  21801  assa2ass  21802  assa2ass2  21803  issubassa3  21805  issubassa  21806  assapropd  21811  aspval  21812  asplss  21813  ascldimul  21827  asclrhm  21829  rnascl  21830  issubassa2  21831  aspval2  21837  assamulgscmlem1  21838  assamulgscmlem2  21839  asclmulg  21841  mplmon2mul  22005  mplind  22006  matinv  22593  lactlmhm  33668  assalactf1o  33669  assaascl0  48505  assaascl1  48506  asclelbas  49130  asclelbasALT  49131
  Copyright terms: Public domain W3C validator