|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > assalmod | Structured version Visualization version GIF version | ||
| Description: An associative algebra is a left module. (Contributed by Mario Carneiro, 5-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| assalmod | ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2736 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 3 | eqid 2736 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 4 | eqid 2736 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 5 | eqid 2736 | . . . 4 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | isassa 21877 | . . 3 ⊢ (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠 ‘𝑊)𝑥)(.r‘𝑊)𝑦) = (𝑧( ·𝑠 ‘𝑊)(𝑥(.r‘𝑊)𝑦)) ∧ (𝑥(.r‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦)) = (𝑧( ·𝑠 ‘𝑊)(𝑥(.r‘𝑊)𝑦))))) | 
| 7 | 6 | simplbi 497 | . 2 ⊢ (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring)) | 
| 8 | 7 | simpld 494 | 1 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 .rcmulr 17299 Scalarcsca 17301 ·𝑠 cvsca 17302 Ringcrg 20231 LModclmod 20859 AssAlgcasa 21871 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 df-assa 21874 | 
| This theorem is referenced by: assasca 21883 assa2ass 21884 assa2ass2 21885 issubassa3 21887 issubassa 21888 assapropd 21893 aspval 21894 asplss 21895 ascldimul 21909 asclrhm 21911 rnascl 21912 issubassa2 21913 aspval2 21919 assamulgscmlem1 21920 assamulgscmlem2 21921 asclmulg 21923 mplmon2mul 22094 mplind 22095 matinv 22684 lactlmhm 33686 assalactf1o 33687 assaascl0 48302 assaascl1 48303 asclelbas 48910 asclelbasALT 48911 | 
| Copyright terms: Public domain | W3C validator |