| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > assalmod | Structured version Visualization version GIF version | ||
| Description: An associative algebra is a left module. (Contributed by Mario Carneiro, 5-Dec-2014.) |
| Ref | Expression |
|---|---|
| assalmod | ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2733 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 3 | eqid 2733 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 4 | eqid 2733 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 5 | eqid 2733 | . . . 4 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | isassa 21795 | . . 3 ⊢ (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠 ‘𝑊)𝑥)(.r‘𝑊)𝑦) = (𝑧( ·𝑠 ‘𝑊)(𝑥(.r‘𝑊)𝑦)) ∧ (𝑥(.r‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦)) = (𝑧( ·𝑠 ‘𝑊)(𝑥(.r‘𝑊)𝑦))))) |
| 7 | 6 | simplbi 497 | . 2 ⊢ (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring)) |
| 8 | 7 | simpld 494 | 1 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 .rcmulr 17164 Scalarcsca 17166 ·𝑠 cvsca 17167 Ringcrg 20153 LModclmod 20795 AssAlgcasa 21789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-assa 21792 |
| This theorem is referenced by: assasca 21801 assa2ass 21802 assa2ass2 21803 issubassa3 21805 issubassa 21806 assapropd 21811 aspval 21812 asplss 21813 ascldimul 21827 asclrhm 21829 rnascl 21830 issubassa2 21831 aspval2 21837 assamulgscmlem1 21838 assamulgscmlem2 21839 asclmulg 21841 mplmon2mul 22005 mplind 22006 matinv 22593 lactlmhm 33668 assalactf1o 33669 assaascl0 48505 assaascl1 48506 asclelbas 49130 asclelbasALT 49131 |
| Copyright terms: Public domain | W3C validator |