| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > assalmod | Structured version Visualization version GIF version | ||
| Description: An associative algebra is a left module. (Contributed by Mario Carneiro, 5-Dec-2014.) |
| Ref | Expression |
|---|---|
| assalmod | ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2736 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 3 | eqid 2736 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 4 | eqid 2736 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 5 | eqid 2736 | . . . 4 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | isassa 21821 | . . 3 ⊢ (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠 ‘𝑊)𝑥)(.r‘𝑊)𝑦) = (𝑧( ·𝑠 ‘𝑊)(𝑥(.r‘𝑊)𝑦)) ∧ (𝑥(.r‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦)) = (𝑧( ·𝑠 ‘𝑊)(𝑥(.r‘𝑊)𝑦))))) |
| 7 | 6 | simplbi 497 | . 2 ⊢ (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring)) |
| 8 | 7 | simpld 494 | 1 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 .rcmulr 17277 Scalarcsca 17279 ·𝑠 cvsca 17280 Ringcrg 20198 LModclmod 20822 AssAlgcasa 21815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-assa 21818 |
| This theorem is referenced by: assasca 21827 assa2ass 21828 assa2ass2 21829 issubassa3 21831 issubassa 21832 assapropd 21837 aspval 21838 asplss 21839 ascldimul 21853 asclrhm 21855 rnascl 21856 issubassa2 21857 aspval2 21863 assamulgscmlem1 21864 assamulgscmlem2 21865 asclmulg 21867 mplmon2mul 22032 mplind 22033 matinv 22620 lactlmhm 33679 assalactf1o 33680 assaascl0 48323 assaascl1 48324 asclelbas 48947 asclelbasALT 48948 |
| Copyright terms: Public domain | W3C validator |