MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assaring Structured version   Visualization version   GIF version

Theorem assaring 21173
Description: An associative algebra is a ring. (Contributed by Mario Carneiro, 5-Dec-2014.)
Assertion
Ref Expression
assaring (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)

Proof of Theorem assaring
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2737 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2737 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4 eqid 2737 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
5 eqid 2737 . . . 4 (.r𝑊) = (.r𝑊)
61, 2, 3, 4, 5isassa 21168 . . 3 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈ CRing) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑧( ·𝑠𝑊)𝑦)) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
76simplbi 499 . 2 (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈ CRing))
87simp2d 1143 1 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  wral 3062  cfv 6483  (class class class)co 7341  Basecbs 17009  .rcmulr 17060  Scalarcsca 17062   ·𝑠 cvsca 17063  Ringcrg 19877  CRingccrg 19878  LModclmod 20228  AssAlgcasa 21162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-nul 5254
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rab 3405  df-v 3444  df-sbc 3731  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-br 5097  df-iota 6435  df-fv 6491  df-ov 7344  df-assa 21165
This theorem is referenced by:  issubassa  21178  assapropd  21181  aspval  21182  asclmul1  21195  asclmul2  21196  ascldimul  21197  asclrhm  21199  rnascl  21200  aspval2  21207  assamulgscmlem1  21208  assamulgscmlem2  21209  zlmassa  21211  mplind  21383  evlseu  21398  pf1subrg  21619  matinv  21931  asclmulg  31961  selvval2lem4  40533  assaascl0  46138  assaascl1  46139
  Copyright terms: Public domain W3C validator