![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > assaring | Structured version Visualization version GIF version |
Description: An associative algebra is a ring. (Contributed by Mario Carneiro, 5-Dec-2014.) |
Ref | Expression |
---|---|
assaring | β’ (π β AssAlg β π β Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2732 | . . . 4 β’ (Scalarβπ) = (Scalarβπ) | |
3 | eqid 2732 | . . . 4 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
4 | eqid 2732 | . . . 4 β’ ( Β·π βπ) = ( Β·π βπ) | |
5 | eqid 2732 | . . . 4 β’ (.rβπ) = (.rβπ) | |
6 | 1, 2, 3, 4, 5 | isassa 21410 | . . 3 β’ (π β AssAlg β ((π β LMod β§ π β Ring) β§ βπ§ β (Baseβ(Scalarβπ))βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)(((π§( Β·π βπ)π₯)(.rβπ)π¦) = (π§( Β·π βπ)(π₯(.rβπ)π¦)) β§ (π₯(.rβπ)(π§( Β·π βπ)π¦)) = (π§( Β·π βπ)(π₯(.rβπ)π¦))))) |
7 | 6 | simplbi 498 | . 2 β’ (π β AssAlg β (π β LMod β§ π β Ring)) |
8 | 7 | simprd 496 | 1 β’ (π β AssAlg β π β Ring) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 βcfv 6543 (class class class)co 7408 Basecbs 17143 .rcmulr 17197 Scalarcsca 17199 Β·π cvsca 17200 Ringcrg 20055 LModclmod 20470 AssAlgcasa 21404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 df-assa 21407 |
This theorem is referenced by: issubassa 21420 assapropd 21425 aspval 21426 asclmul1 21439 asclmul2 21440 ascldimul 21441 asclrhm 21443 rnascl 21444 aspval2 21451 assamulgscmlem1 21452 assamulgscmlem2 21453 zlmassa 21455 mplind 21630 evlseu 21645 pf1subrg 21866 matinv 22178 asclmulg 32630 irngnzply1lem 32749 assaascl0 47050 assaascl1 47051 |
Copyright terms: Public domain | W3C validator |