MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assaring Structured version   Visualization version   GIF version

Theorem assaring 21882
Description: An associative algebra is a ring. (Contributed by Mario Carneiro, 5-Dec-2014.)
Assertion
Ref Expression
assaring (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)

Proof of Theorem assaring
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2736 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2736 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4 eqid 2736 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
5 eqid 2736 . . . 4 (.r𝑊) = (.r𝑊)
61, 2, 3, 4, 5isassa 21877 . . 3 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑧( ·𝑠𝑊)𝑦)) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
76simplbi 497 . 2 (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring))
87simprd 495 1 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  cfv 6560  (class class class)co 7432  Basecbs 17248  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  Ringcrg 20231  LModclmod 20859  AssAlgcasa 21871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-nul 5305
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568  df-ov 7435  df-assa 21874
This theorem is referenced by:  issubassa  21888  assapropd  21893  aspval  21894  asclmul1  21907  asclmul2  21908  ascldimul  21909  asclrhm  21911  rnascl  21912  aspval2  21919  assamulgscmlem1  21920  assamulgscmlem2  21921  asclmulg  21923  zlmassa  21924  mplind  22095  evlseu  22108  pf1subrg  22353  matinv  22684  lactlmhm  33686  assalactf1o  33687  assarrginv  33688  irngnzply1lem  33741  assaascl0  48302  assaascl1  48303  asclelbas  48910  asclelbasALT  48911
  Copyright terms: Public domain W3C validator