| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > assaring | Structured version Visualization version GIF version | ||
| Description: An associative algebra is a ring. (Contributed by Mario Carneiro, 5-Dec-2014.) |
| Ref | Expression |
|---|---|
| assaring | ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2733 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 3 | eqid 2733 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 4 | eqid 2733 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 5 | eqid 2733 | . . . 4 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | isassa 21797 | . . 3 ⊢ (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠 ‘𝑊)𝑥)(.r‘𝑊)𝑦) = (𝑧( ·𝑠 ‘𝑊)(𝑥(.r‘𝑊)𝑦)) ∧ (𝑥(.r‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦)) = (𝑧( ·𝑠 ‘𝑊)(𝑥(.r‘𝑊)𝑦))))) |
| 7 | 6 | simplbi 497 | . 2 ⊢ (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring)) |
| 8 | 7 | simprd 495 | 1 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 .rcmulr 17166 Scalarcsca 17168 ·𝑠 cvsca 17169 Ringcrg 20155 LModclmod 20797 AssAlgcasa 21791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-ov 7357 df-assa 21794 |
| This theorem is referenced by: issubassa 21808 assapropd 21813 aspval 21814 asclmul1 21827 asclmul2 21828 ascldimul 21829 asclrhm 21831 rnascl 21832 aspval2 21839 assamulgscmlem1 21840 assamulgscmlem2 21841 asclmulg 21843 zlmassa 21844 mplind 22008 evlseu 22021 pf1subrg 22266 matinv 22595 lactlmhm 33670 assalactf1o 33671 assarrginv 33672 irngnzply1lem 33726 assaascl0 48508 assaascl1 48509 asclelbas 49133 asclelbasALT 49134 |
| Copyright terms: Public domain | W3C validator |