MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assaring Structured version   Visualization version   GIF version

Theorem assaring 21770
Description: An associative algebra is a ring. (Contributed by Mario Carneiro, 5-Dec-2014.)
Assertion
Ref Expression
assaring (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)

Proof of Theorem assaring
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2729 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2729 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4 eqid 2729 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
5 eqid 2729 . . . 4 (.r𝑊) = (.r𝑊)
61, 2, 3, 4, 5isassa 21765 . . 3 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑧( ·𝑠𝑊)𝑦)) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
76simplbi 497 . 2 (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring))
87simprd 495 1 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cfv 6511  (class class class)co 7387  Basecbs 17179  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  Ringcrg 20142  LModclmod 20766  AssAlgcasa 21759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-assa 21762
This theorem is referenced by:  issubassa  21776  assapropd  21781  aspval  21782  asclmul1  21795  asclmul2  21796  ascldimul  21797  asclrhm  21799  rnascl  21800  aspval2  21807  assamulgscmlem1  21808  assamulgscmlem2  21809  asclmulg  21811  zlmassa  21812  mplind  21977  evlseu  21990  pf1subrg  22235  matinv  22564  lactlmhm  33630  assalactf1o  33631  assarrginv  33632  irngnzply1lem  33685  assaascl0  48366  assaascl1  48367  asclelbas  48991  asclelbasALT  48992
  Copyright terms: Public domain W3C validator