![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > assaring | Structured version Visualization version GIF version |
Description: An associative algebra is a ring. (Contributed by Mario Carneiro, 5-Dec-2014.) |
Ref | Expression |
---|---|
assaring | ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2735 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | eqid 2735 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
4 | eqid 2735 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
5 | eqid 2735 | . . . 4 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
6 | 1, 2, 3, 4, 5 | isassa 21894 | . . 3 ⊢ (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠 ‘𝑊)𝑥)(.r‘𝑊)𝑦) = (𝑧( ·𝑠 ‘𝑊)(𝑥(.r‘𝑊)𝑦)) ∧ (𝑥(.r‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦)) = (𝑧( ·𝑠 ‘𝑊)(𝑥(.r‘𝑊)𝑦))))) |
7 | 6 | simplbi 497 | . 2 ⊢ (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring)) |
8 | 7 | simprd 495 | 1 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 .rcmulr 17299 Scalarcsca 17301 ·𝑠 cvsca 17302 Ringcrg 20251 LModclmod 20875 AssAlgcasa 21888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-assa 21891 |
This theorem is referenced by: issubassa 21905 assapropd 21910 aspval 21911 asclmul1 21924 asclmul2 21925 ascldimul 21926 asclrhm 21928 rnascl 21929 aspval2 21936 assamulgscmlem1 21937 assamulgscmlem2 21938 asclmulg 21940 zlmassa 21941 mplind 22112 evlseu 22125 pf1subrg 22368 matinv 22699 lactlmhm 33662 assalactf1o 33663 assarrginv 33664 irngnzply1lem 33705 assaascl0 48226 assaascl1 48227 asclelbas 48795 asclelbasALT 48796 |
Copyright terms: Public domain | W3C validator |