MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assaring Structured version   Visualization version   GIF version

Theorem assaring 21802
Description: An associative algebra is a ring. (Contributed by Mario Carneiro, 5-Dec-2014.)
Assertion
Ref Expression
assaring (π‘Š ∈ AssAlg β†’ π‘Š ∈ Ring)

Proof of Theorem assaring
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . . 4 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
2 eqid 2728 . . . 4 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
3 eqid 2728 . . . 4 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
4 eqid 2728 . . . 4 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
5 eqid 2728 . . . 4 (.rβ€˜π‘Š) = (.rβ€˜π‘Š)
61, 2, 3, 4, 5isassa 21797 . . 3 (π‘Š ∈ AssAlg ↔ ((π‘Š ∈ LMod ∧ π‘Š ∈ Ring) ∧ βˆ€π‘§ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))βˆ€π‘₯ ∈ (Baseβ€˜π‘Š)βˆ€π‘¦ ∈ (Baseβ€˜π‘Š)(((𝑧( ·𝑠 β€˜π‘Š)π‘₯)(.rβ€˜π‘Š)𝑦) = (𝑧( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦)) ∧ (π‘₯(.rβ€˜π‘Š)(𝑧( ·𝑠 β€˜π‘Š)𝑦)) = (𝑧( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦)))))
76simplbi 496 . 2 (π‘Š ∈ AssAlg β†’ (π‘Š ∈ LMod ∧ π‘Š ∈ Ring))
87simprd 494 1 (π‘Š ∈ AssAlg β†’ π‘Š ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆ€wral 3058  β€˜cfv 6553  (class class class)co 7426  Basecbs 17187  .rcmulr 17241  Scalarcsca 17243   ·𝑠 cvsca 17244  Ringcrg 20180  LModclmod 20750  AssAlgcasa 21791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-nul 5310
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-iota 6505  df-fv 6561  df-ov 7429  df-assa 21794
This theorem is referenced by:  issubassa  21807  assapropd  21812  aspval  21813  asclmul1  21826  asclmul2  21827  ascldimul  21828  asclrhm  21830  rnascl  21831  aspval2  21838  assamulgscmlem1  21839  assamulgscmlem2  21840  asclmulg  21842  zlmassa  21843  mplind  22021  evlseu  22036  pf1subrg  22274  matinv  22599  irngnzply1lem  33401  assaascl0  47526  assaascl1  47527
  Copyright terms: Public domain W3C validator