| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > assaring | Structured version Visualization version GIF version | ||
| Description: An associative algebra is a ring. (Contributed by Mario Carneiro, 5-Dec-2014.) |
| Ref | Expression |
|---|---|
| assaring | ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 3 | eqid 2729 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 4 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 5 | eqid 2729 | . . . 4 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | isassa 21781 | . . 3 ⊢ (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠 ‘𝑊)𝑥)(.r‘𝑊)𝑦) = (𝑧( ·𝑠 ‘𝑊)(𝑥(.r‘𝑊)𝑦)) ∧ (𝑥(.r‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦)) = (𝑧( ·𝑠 ‘𝑊)(𝑥(.r‘𝑊)𝑦))))) |
| 7 | 6 | simplbi 497 | . 2 ⊢ (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring)) |
| 8 | 7 | simprd 495 | 1 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 .rcmulr 17180 Scalarcsca 17182 ·𝑠 cvsca 17183 Ringcrg 20136 LModclmod 20781 AssAlgcasa 21775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-assa 21778 |
| This theorem is referenced by: issubassa 21792 assapropd 21797 aspval 21798 asclmul1 21811 asclmul2 21812 ascldimul 21813 asclrhm 21815 rnascl 21816 aspval2 21823 assamulgscmlem1 21824 assamulgscmlem2 21825 asclmulg 21827 zlmassa 21828 mplind 21993 evlseu 22006 pf1subrg 22251 matinv 22580 lactlmhm 33606 assalactf1o 33607 assarrginv 33608 irngnzply1lem 33661 assaascl0 48366 assaascl1 48367 asclelbas 48991 asclelbasALT 48992 |
| Copyright terms: Public domain | W3C validator |