MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assaring Structured version   Visualization version   GIF version

Theorem assaring 21068
Description: An associative algebra is a ring. (Contributed by Mario Carneiro, 5-Dec-2014.)
Assertion
Ref Expression
assaring (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)

Proof of Theorem assaring
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2738 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2738 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4 eqid 2738 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
5 eqid 2738 . . . 4 (.r𝑊) = (.r𝑊)
61, 2, 3, 4, 5isassa 21063 . . 3 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈ CRing) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑧( ·𝑠𝑊)𝑦)) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
76simplbi 498 . 2 (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈ CRing))
87simp2d 1142 1 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cfv 6433  (class class class)co 7275  Basecbs 16912  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  Ringcrg 19783  CRingccrg 19784  LModclmod 20123  AssAlgcasa 21057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-assa 21060
This theorem is referenced by:  issubassa  21073  assapropd  21076  aspval  21077  asclmul1  21090  asclmul2  21091  ascldimul  21092  asclrhm  21094  rnascl  21095  aspval2  21102  assamulgscmlem1  21103  assamulgscmlem2  21104  zlmassa  21106  mplind  21278  evlseu  21293  pf1subrg  21514  matinv  21826  asclmulg  31666  selvval2lem4  40228  assaascl0  45720  assaascl1  45721
  Copyright terms: Public domain W3C validator