Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > assaring | Structured version Visualization version GIF version |
Description: An associative algebra is a ring. (Contributed by Mario Carneiro, 5-Dec-2014.) |
Ref | Expression |
---|---|
assaring | ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2737 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | eqid 2737 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
4 | eqid 2737 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
5 | eqid 2737 | . . . 4 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
6 | 1, 2, 3, 4, 5 | isassa 21168 | . . 3 ⊢ (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈ CRing) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠 ‘𝑊)𝑥)(.r‘𝑊)𝑦) = (𝑧( ·𝑠 ‘𝑊)(𝑥(.r‘𝑊)𝑦)) ∧ (𝑥(.r‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦)) = (𝑧( ·𝑠 ‘𝑊)(𝑥(.r‘𝑊)𝑦))))) |
7 | 6 | simplbi 499 | . 2 ⊢ (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈ CRing)) |
8 | 7 | simp2d 1143 | 1 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ‘cfv 6483 (class class class)co 7341 Basecbs 17009 .rcmulr 17060 Scalarcsca 17062 ·𝑠 cvsca 17063 Ringcrg 19877 CRingccrg 19878 LModclmod 20228 AssAlgcasa 21162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-nul 5254 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rab 3405 df-v 3444 df-sbc 3731 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-iota 6435 df-fv 6491 df-ov 7344 df-assa 21165 |
This theorem is referenced by: issubassa 21178 assapropd 21181 aspval 21182 asclmul1 21195 asclmul2 21196 ascldimul 21197 asclrhm 21199 rnascl 21200 aspval2 21207 assamulgscmlem1 21208 assamulgscmlem2 21209 zlmassa 21211 mplind 21383 evlseu 21398 pf1subrg 21619 matinv 21931 asclmulg 31961 selvval2lem4 40533 assaascl0 46138 assaascl1 46139 |
Copyright terms: Public domain | W3C validator |