Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  asslawass Structured version   Visualization version   GIF version

Theorem asslawass 45060
Description: Associativity of an associative operation. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 21-Jan-2020.)
Assertion
Ref Expression
asslawass ( assLaw 𝑀 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
Distinct variable groups:   𝑥,𝑀,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem asslawass
Dummy variables 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-asslaw 45055 . . . 4 assLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚𝑧𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))}
21bropaex12 5639 . . 3 ( assLaw 𝑀 → ( ∈ V ∧ 𝑀 ∈ V))
3 isasslaw 45059 . . 3 (( ∈ V ∧ 𝑀 ∈ V) → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
42, 3syl 17 . 2 ( assLaw 𝑀 → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
54ibi 270 1 ( assLaw 𝑀 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408   class class class wbr 5053  (class class class)co 7213   assLaw casslaw 45051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-xp 5557  df-iota 6338  df-fv 6388  df-ov 7216  df-asslaw 45055
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator