Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > asslawass | Structured version Visualization version GIF version |
Description: Associativity of an associative operation. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 21-Jan-2020.) |
Ref | Expression |
---|---|
asslawass | ⊢ ( ⚬ assLaw 𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-asslaw 45382 | . . . 4 ⊢ assLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 ∀𝑧 ∈ 𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))} | |
2 | 1 | bropaex12 5678 | . . 3 ⊢ ( ⚬ assLaw 𝑀 → ( ⚬ ∈ V ∧ 𝑀 ∈ V)) |
3 | isasslaw 45386 | . . 3 ⊢ (( ⚬ ∈ V ∧ 𝑀 ∈ V) → ( ⚬ assLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ( ⚬ assLaw 𝑀 → ( ⚬ assLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
5 | 4 | ibi 266 | 1 ⊢ ( ⚬ assLaw 𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 class class class wbr 5074 (class class class)co 7275 assLaw casslaw 45378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-iota 6391 df-fv 6441 df-ov 7278 df-asslaw 45382 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |