Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isasslaw | Structured version Visualization version GIF version |
Description: The predicate "is an associative operation". (Contributed by FL, 1-Nov-2009.) (Revised by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
isasslaw | ⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ assLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) | |
2 | id 22 | . . . . . . . 8 ⊢ (𝑜 = ⚬ → 𝑜 = ⚬ ) | |
3 | oveq 7281 | . . . . . . . 8 ⊢ (𝑜 = ⚬ → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) | |
4 | eqidd 2739 | . . . . . . . 8 ⊢ (𝑜 = ⚬ → 𝑧 = 𝑧) | |
5 | 2, 3, 4 | oveq123d 7296 | . . . . . . 7 ⊢ (𝑜 = ⚬ → ((𝑥𝑜𝑦)𝑜𝑧) = ((𝑥 ⚬ 𝑦) ⚬ 𝑧)) |
6 | eqidd 2739 | . . . . . . . 8 ⊢ (𝑜 = ⚬ → 𝑥 = 𝑥) | |
7 | oveq 7281 | . . . . . . . 8 ⊢ (𝑜 = ⚬ → (𝑦𝑜𝑧) = (𝑦 ⚬ 𝑧)) | |
8 | 2, 6, 7 | oveq123d 7296 | . . . . . . 7 ⊢ (𝑜 = ⚬ → (𝑥𝑜(𝑦𝑜𝑧)) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
9 | 5, 8 | eqeq12d 2754 | . . . . . 6 ⊢ (𝑜 = ⚬ → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
10 | 9 | adantr 481 | . . . . 5 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
11 | 1, 10 | raleqbidv 3336 | . . . 4 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (∀𝑧 ∈ 𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
12 | 1, 11 | raleqbidv 3336 | . . 3 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (∀𝑦 ∈ 𝑚 ∀𝑧 ∈ 𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
13 | 1, 12 | raleqbidv 3336 | . 2 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 ∀𝑧 ∈ 𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
14 | df-asslaw 45382 | . 2 ⊢ assLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 ∀𝑧 ∈ 𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))} | |
15 | 13, 14 | brabga 5447 | 1 ⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ assLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 (class class class)co 7275 assLaw casslaw 45378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-iota 6391 df-fv 6441 df-ov 7278 df-asslaw 45382 |
This theorem is referenced by: asslawass 45387 sgrpplusgaopALT 45389 isassintop 45404 assintopass 45408 sgrp2sgrp 45422 |
Copyright terms: Public domain | W3C validator |