Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isasslaw Structured version   Visualization version   GIF version

Theorem isasslaw 44119
Description: The predicate "is an associative operation". (Contributed by FL, 1-Nov-2009.) (Revised by AV, 13-Jan-2020.)
Assertion
Ref Expression
isasslaw (( 𝑉𝑀𝑊) → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
Distinct variable groups:   𝑥,𝑀,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem isasslaw
Dummy variables 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . 3 ((𝑜 = 𝑚 = 𝑀) → 𝑚 = 𝑀)
2 id 22 . . . . . . . 8 (𝑜 = 𝑜 = )
3 oveq 7162 . . . . . . . 8 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
4 eqidd 2822 . . . . . . . 8 (𝑜 = 𝑧 = 𝑧)
52, 3, 4oveq123d 7177 . . . . . . 7 (𝑜 = → ((𝑥𝑜𝑦)𝑜𝑧) = ((𝑥 𝑦) 𝑧))
6 eqidd 2822 . . . . . . . 8 (𝑜 = 𝑥 = 𝑥)
7 oveq 7162 . . . . . . . 8 (𝑜 = → (𝑦𝑜𝑧) = (𝑦 𝑧))
82, 6, 7oveq123d 7177 . . . . . . 7 (𝑜 = → (𝑥𝑜(𝑦𝑜𝑧)) = (𝑥 (𝑦 𝑧)))
95, 8eqeq12d 2837 . . . . . 6 (𝑜 = → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
109adantr 483 . . . . 5 ((𝑜 = 𝑚 = 𝑀) → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
111, 10raleqbidv 3401 . . . 4 ((𝑜 = 𝑚 = 𝑀) → (∀𝑧𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
121, 11raleqbidv 3401 . . 3 ((𝑜 = 𝑚 = 𝑀) → (∀𝑦𝑚𝑧𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
131, 12raleqbidv 3401 . 2 ((𝑜 = 𝑚 = 𝑀) → (∀𝑥𝑚𝑦𝑚𝑧𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
14 df-asslaw 44115 . 2 assLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚𝑧𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))}
1513, 14brabga 5421 1 (( 𝑉𝑀𝑊) → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138   class class class wbr 5066  (class class class)co 7156   assLaw casslaw 44111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-iota 6314  df-fv 6363  df-ov 7159  df-asslaw 44115
This theorem is referenced by:  asslawass  44120  sgrpplusgaopALT  44122  isassintop  44137  assintopass  44141  sgrp2sgrp  44155
  Copyright terms: Public domain W3C validator