Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmplusgiopALT Structured version   Visualization version   GIF version

Theorem mgmplusgiopALT 47179
Description: Slot 2 (group operation) of a magma as extensible structure is a closed operation on the base set. (Contributed by AV, 13-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
mgmplusgiopALT (𝑀 ∈ Mgm → (+g𝑀) clLaw (Base‘𝑀))

Proof of Theorem mgmplusgiopALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2727 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2727 . . . . 5 (+g𝑀) = (+g𝑀)
31, 2mgmcl 18594 . . . 4 ((𝑀 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
433expb 1118 . . 3 ((𝑀 ∈ Mgm ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
54ralrimivva 3195 . 2 (𝑀 ∈ Mgm → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
6 fvex 6904 . . . 4 (+g𝑀) ∈ V
7 fvex 6904 . . . 4 (Base‘𝑀) ∈ V
86, 7pm3.2i 470 . . 3 ((+g𝑀) ∈ V ∧ (Base‘𝑀) ∈ V)
9 iscllaw 47174 . . 3 (((+g𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
108, 9mp1i 13 . 2 (𝑀 ∈ Mgm → ((+g𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
115, 10mpbird 257 1 (𝑀 ∈ Mgm → (+g𝑀) clLaw (Base‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2099  wral 3056  Vcvv 3469   class class class wbr 5142  cfv 6542  (class class class)co 7414  Basecbs 17171  +gcplusg 17224  Mgmcmgm 18589   clLaw ccllaw 47168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-iota 6494  df-fv 6550  df-ov 7417  df-mgm 18591  df-cllaw 47171
This theorem is referenced by:  mgm2mgm  47212
  Copyright terms: Public domain W3C validator