Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmplusgiopALT Structured version   Visualization version   GIF version

Theorem mgmplusgiopALT 45388
Description: Slot 2 (group operation) of a magma as extensible structure is a closed operation on the base set. (Contributed by AV, 13-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
mgmplusgiopALT (𝑀 ∈ Mgm → (+g𝑀) clLaw (Base‘𝑀))

Proof of Theorem mgmplusgiopALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2738 . . . . 5 (+g𝑀) = (+g𝑀)
31, 2mgmcl 18329 . . . 4 ((𝑀 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
433expb 1119 . . 3 ((𝑀 ∈ Mgm ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
54ralrimivva 3123 . 2 (𝑀 ∈ Mgm → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
6 fvex 6787 . . . 4 (+g𝑀) ∈ V
7 fvex 6787 . . . 4 (Base‘𝑀) ∈ V
86, 7pm3.2i 471 . . 3 ((+g𝑀) ∈ V ∧ (Base‘𝑀) ∈ V)
9 iscllaw 45383 . . 3 (((+g𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
108, 9mp1i 13 . 2 (𝑀 ∈ Mgm → ((+g𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
115, 10mpbird 256 1 (𝑀 ∈ Mgm → (+g𝑀) clLaw (Base‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wral 3064  Vcvv 3432   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Mgmcmgm 18324   clLaw ccllaw 45377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-iota 6391  df-fv 6441  df-ov 7278  df-mgm 18326  df-cllaw 45380
This theorem is referenced by:  mgm2mgm  45421
  Copyright terms: Public domain W3C validator