![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgmplusgiopALT | Structured version Visualization version GIF version |
Description: Slot 2 (group operation) of a magma as extensible structure is a closed operation on the base set. (Contributed by AV, 13-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
mgmplusgiopALT | ⊢ (𝑀 ∈ Mgm → (+g‘𝑀) clLaw (Base‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2733 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | 1, 2 | mgmcl 18564 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
4 | 3 | 3expb 1121 | . . 3 ⊢ ((𝑀 ∈ Mgm ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
5 | 4 | ralrimivva 3201 | . 2 ⊢ (𝑀 ∈ Mgm → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
6 | fvex 6905 | . . . 4 ⊢ (+g‘𝑀) ∈ V | |
7 | fvex 6905 | . . . 4 ⊢ (Base‘𝑀) ∈ V | |
8 | 6, 7 | pm3.2i 472 | . . 3 ⊢ ((+g‘𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) |
9 | iscllaw 46599 | . . 3 ⊢ (((+g‘𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g‘𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) | |
10 | 8, 9 | mp1i 13 | . 2 ⊢ (𝑀 ∈ Mgm → ((+g‘𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) |
11 | 5, 10 | mpbird 257 | 1 ⊢ (𝑀 ∈ Mgm → (+g‘𝑀) clLaw (Base‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ∀wral 3062 Vcvv 3475 class class class wbr 5149 ‘cfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 Mgmcmgm 18559 clLaw ccllaw 46593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-iota 6496 df-fv 6552 df-ov 7412 df-mgm 18561 df-cllaw 46596 |
This theorem is referenced by: mgm2mgm 46637 |
Copyright terms: Public domain | W3C validator |