![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgmplusgiopALT | Structured version Visualization version GIF version |
Description: Slot 2 (group operation) of a magma as extensible structure is a closed operation on the base set. (Contributed by AV, 13-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
mgmplusgiopALT | ⊢ (𝑀 ∈ Mgm → (+g‘𝑀) clLaw (Base‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2740 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | 1, 2 | mgmcl 18681 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
4 | 3 | 3expb 1120 | . . 3 ⊢ ((𝑀 ∈ Mgm ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
5 | 4 | ralrimivva 3208 | . 2 ⊢ (𝑀 ∈ Mgm → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
6 | fvex 6933 | . . . 4 ⊢ (+g‘𝑀) ∈ V | |
7 | fvex 6933 | . . . 4 ⊢ (Base‘𝑀) ∈ V | |
8 | 6, 7 | pm3.2i 470 | . . 3 ⊢ ((+g‘𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) |
9 | iscllaw 47912 | . . 3 ⊢ (((+g‘𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g‘𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) | |
10 | 8, 9 | mp1i 13 | . 2 ⊢ (𝑀 ∈ Mgm → ((+g‘𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) |
11 | 5, 10 | mpbird 257 | 1 ⊢ (𝑀 ∈ Mgm → (+g‘𝑀) clLaw (Base‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Mgmcmgm 18676 clLaw ccllaw 47906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-iota 6525 df-fv 6581 df-ov 7451 df-mgm 18678 df-cllaw 47909 |
This theorem is referenced by: mgm2mgm 47950 |
Copyright terms: Public domain | W3C validator |