Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemoex Structured version   Visualization version   GIF version

Theorem ballotlemoex 32452
Description: 𝑂 is a set. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
Assertion
Ref Expression
ballotlemoex 𝑂 ∈ V
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐

Proof of Theorem ballotlemoex
StepHypRef Expression
1 ballotth.o . 2 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
2 ovex 7308 . . 3 (1...(𝑀 + 𝑁)) ∈ V
32pwex 5303 . 2 𝒫 (1...(𝑀 + 𝑁)) ∈ V
41, 3rabex2 5258 1 𝑂 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  𝒫 cpw 4533  cfv 6433  (class class class)co 7275  1c1 10872   + caddc 10874  cn 11973  ...cfz 13239  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-sn 4562  df-pr 4564  df-uni 4840  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  ballotlem2  32455  ballotlem8  32503
  Copyright terms: Public domain W3C validator