Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemoex Structured version   Visualization version   GIF version

Theorem ballotlemoex 32352
Description: 𝑂 is a set. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
Assertion
Ref Expression
ballotlemoex 𝑂 ∈ V
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐

Proof of Theorem ballotlemoex
StepHypRef Expression
1 ballotth.o . 2 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
2 ovex 7288 . . 3 (1...(𝑀 + 𝑁)) ∈ V
32pwex 5298 . 2 𝒫 (1...(𝑀 + 𝑁)) ∈ V
41, 3rabex2 5253 1 𝑂 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  𝒫 cpw 4530  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805  cn 11903  ...cfz 13168  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  ballotlem2  32355  ballotlem8  32403
  Copyright terms: Public domain W3C validator