| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemoex | Structured version Visualization version GIF version | ||
| Description: 𝑂 is a set. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| Ref | Expression |
|---|---|
| ballotlemoex | ⊢ 𝑂 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballotth.o | . 2 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 2 | ovex 7423 | . . 3 ⊢ (1...(𝑀 + 𝑁)) ∈ V | |
| 3 | 2 | pwex 5338 | . 2 ⊢ 𝒫 (1...(𝑀 + 𝑁)) ∈ V |
| 4 | 1, 3 | rabex2 5299 | 1 ⊢ 𝑂 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 𝒫 cpw 4566 ‘cfv 6514 (class class class)co 7390 1c1 11076 + caddc 11078 ℕcn 12193 ...cfz 13475 ♯chash 14302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-pw 4568 df-sn 4593 df-pr 4595 df-uni 4875 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: ballotlem2 34487 ballotlem8 34535 |
| Copyright terms: Public domain | W3C validator |