| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemoex | Structured version Visualization version GIF version | ||
| Description: 𝑂 is a set. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| Ref | Expression |
|---|---|
| ballotlemoex | ⊢ 𝑂 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballotth.o | . 2 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 2 | ovex 7438 | . . 3 ⊢ (1...(𝑀 + 𝑁)) ∈ V | |
| 3 | 2 | pwex 5350 | . 2 ⊢ 𝒫 (1...(𝑀 + 𝑁)) ∈ V |
| 4 | 1, 3 | rabex2 5311 | 1 ⊢ 𝑂 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 𝒫 cpw 4575 ‘cfv 6531 (class class class)co 7405 1c1 11130 + caddc 11132 ℕcn 12240 ...cfz 13524 ♯chash 14348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-pw 4577 df-sn 4602 df-pr 4604 df-uni 4884 df-iota 6484 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: ballotlem2 34521 ballotlem8 34569 |
| Copyright terms: Public domain | W3C validator |