Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemoex Structured version   Visualization version   GIF version

Theorem ballotlemoex 33973
Description: 𝑂 is a set. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
Assertion
Ref Expression
ballotlemoex 𝑂 ∈ V
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐

Proof of Theorem ballotlemoex
StepHypRef Expression
1 ballotth.o . 2 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
2 ovex 7434 . . 3 (1...(𝑀 + 𝑁)) ∈ V
32pwex 5368 . 2 𝒫 (1...(𝑀 + 𝑁)) ∈ V
41, 3rabex2 5324 1 𝑂 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  {crab 3424  Vcvv 3466  𝒫 cpw 4594  cfv 6533  (class class class)co 7401  1c1 11107   + caddc 11109  cn 12209  ...cfz 13481  chash 14287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-pw 4596  df-sn 4621  df-pr 4623  df-uni 4900  df-iota 6485  df-fv 6541  df-ov 7404
This theorem is referenced by:  ballotlem2  33976  ballotlem8  34024
  Copyright terms: Public domain W3C validator