Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemoex | Structured version Visualization version GIF version |
Description: 𝑂 is a set. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
Ref | Expression |
---|---|
ballotlemoex | ⊢ 𝑂 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.o | . 2 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
2 | ovex 7308 | . . 3 ⊢ (1...(𝑀 + 𝑁)) ∈ V | |
3 | 2 | pwex 5303 | . 2 ⊢ 𝒫 (1...(𝑀 + 𝑁)) ∈ V |
4 | 1, 3 | rabex2 5258 | 1 ⊢ 𝑂 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 𝒫 cpw 4533 ‘cfv 6433 (class class class)co 7275 1c1 10872 + caddc 10874 ℕcn 11973 ...cfz 13239 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: ballotlem2 32455 ballotlem8 32503 |
Copyright terms: Public domain | W3C validator |