![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemoex | Structured version Visualization version GIF version |
Description: 𝑂 is a set. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
Ref | Expression |
---|---|
ballotlemoex | ⊢ 𝑂 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.o | . 2 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
2 | ovex 7048 | . . 3 ⊢ (1...(𝑀 + 𝑁)) ∈ V | |
3 | 2 | pwex 5172 | . 2 ⊢ 𝒫 (1...(𝑀 + 𝑁)) ∈ V |
4 | 1, 3 | rabex2 5128 | 1 ⊢ 𝑂 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ∈ wcel 2081 {crab 3109 Vcvv 3437 𝒫 cpw 4453 ‘cfv 6225 (class class class)co 7016 1c1 10384 + caddc 10386 ℕcn 11486 ...cfz 12742 ♯chash 13540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-pw 4455 df-sn 4473 df-pr 4475 df-uni 4746 df-iota 6189 df-fv 6233 df-ov 7019 |
This theorem is referenced by: ballotlem2 31363 ballotlem8 31411 |
Copyright terms: Public domain | W3C validator |