Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemoex Structured version   Visualization version   GIF version

Theorem ballotlemoex 32750
Description: 𝑂 is a set. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
Assertion
Ref Expression
ballotlemoex 𝑂 ∈ V
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐

Proof of Theorem ballotlemoex
StepHypRef Expression
1 ballotth.o . 2 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
2 ovex 7375 . . 3 (1...(𝑀 + 𝑁)) ∈ V
32pwex 5328 . 2 𝒫 (1...(𝑀 + 𝑁)) ∈ V
41, 3rabex2 5283 1 𝑂 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  {crab 3404  Vcvv 3442  𝒫 cpw 4552  cfv 6484  (class class class)co 7342  1c1 10978   + caddc 10980  cn 12079  ...cfz 13345  chash 14150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-rab 3405  df-v 3444  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-pw 4554  df-sn 4579  df-pr 4581  df-uni 4858  df-iota 6436  df-fv 6492  df-ov 7345
This theorem is referenced by:  ballotlem2  32753  ballotlem8  32801
  Copyright terms: Public domain W3C validator