Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemoex | Structured version Visualization version GIF version |
Description: 𝑂 is a set. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
Ref | Expression |
---|---|
ballotlemoex | ⊢ 𝑂 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.o | . 2 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
2 | ovex 7375 | . . 3 ⊢ (1...(𝑀 + 𝑁)) ∈ V | |
3 | 2 | pwex 5328 | . 2 ⊢ 𝒫 (1...(𝑀 + 𝑁)) ∈ V |
4 | 1, 3 | rabex2 5283 | 1 ⊢ 𝑂 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 {crab 3404 Vcvv 3442 𝒫 cpw 4552 ‘cfv 6484 (class class class)co 7342 1c1 10978 + caddc 10980 ℕcn 12079 ...cfz 13345 ♯chash 14150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-pw 4554 df-sn 4579 df-pr 4581 df-uni 4858 df-iota 6436 df-fv 6492 df-ov 7345 |
This theorem is referenced by: ballotlem2 32753 ballotlem8 32801 |
Copyright terms: Public domain | W3C validator |