![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlem1 | Structured version Visualization version GIF version |
Description: The size of the universe is a binomial coefficient. (Contributed by Thierry Arnoux, 23-Nov-2016.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
Ref | Expression |
---|---|
ballotlem1 | ⊢ (♯‘𝑂) = ((𝑀 + 𝑁)C𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
2 | 1 | fveq2i 6923 | . 2 ⊢ (♯‘𝑂) = (♯‘{𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}) |
3 | fzfi 14023 | . . 3 ⊢ (1...(𝑀 + 𝑁)) ∈ Fin | |
4 | ballotth.m | . . . 4 ⊢ 𝑀 ∈ ℕ | |
5 | 4 | nnzi 12667 | . . 3 ⊢ 𝑀 ∈ ℤ |
6 | hashbc 14502 | . . 3 ⊢ (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝑀 ∈ ℤ) → ((♯‘(1...(𝑀 + 𝑁)))C𝑀) = (♯‘{𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀})) | |
7 | 3, 5, 6 | mp2an 691 | . 2 ⊢ ((♯‘(1...(𝑀 + 𝑁)))C𝑀) = (♯‘{𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}) |
8 | ballotth.n | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
9 | 4, 8 | pm3.2i 470 | . . . . 5 ⊢ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) |
10 | nnaddcl 12316 | . . . . 5 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
11 | nnnn0 12560 | . . . . 5 ⊢ ((𝑀 + 𝑁) ∈ ℕ → (𝑀 + 𝑁) ∈ ℕ0) | |
12 | 9, 10, 11 | mp2b 10 | . . . 4 ⊢ (𝑀 + 𝑁) ∈ ℕ0 |
13 | hashfz1 14395 | . . . 4 ⊢ ((𝑀 + 𝑁) ∈ ℕ0 → (♯‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁)) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ (♯‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁) |
15 | 14 | oveq1i 7458 | . 2 ⊢ ((♯‘(1...(𝑀 + 𝑁)))C𝑀) = ((𝑀 + 𝑁)C𝑀) |
16 | 2, 7, 15 | 3eqtr2i 2774 | 1 ⊢ (♯‘𝑂) = ((𝑀 + 𝑁)C𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 𝒫 cpw 4622 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 1c1 11185 + caddc 11187 ℕcn 12293 ℕ0cn0 12553 ℤcz 12639 ...cfz 13567 Ccbc 14351 ♯chash 14379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-seq 14053 df-fac 14323 df-bc 14352 df-hash 14380 |
This theorem is referenced by: ballotlem2 34453 ballotth 34502 |
Copyright terms: Public domain | W3C validator |