![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlem8 | Structured version Visualization version GIF version |
Description: There are as many countings with ties starting with a ballot for 𝐴 as there are starting with a ballot for 𝐵. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
Ref | Expression |
---|---|
ballotlem8 | ⊢ (♯‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) = (♯‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | ballotth.e | . . 3 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
7 | ballotth.mgtn | . . 3 ⊢ 𝑁 < 𝑀 | |
8 | ballotth.i | . . 3 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
9 | ballotth.s | . . 3 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
10 | ballotth.r | . . 3 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlem7 34023 | . 2 ⊢ (𝑅 ↾ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}):{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}–1-1-onto→{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} |
12 | 1, 2, 3 | ballotlemoex 33973 | . . . . 5 ⊢ 𝑂 ∈ V |
13 | difexg 5317 | . . . . 5 ⊢ (𝑂 ∈ V → (𝑂 ∖ 𝐸) ∈ V) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (𝑂 ∖ 𝐸) ∈ V |
15 | 14 | rabex 5322 | . . 3 ⊢ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ∈ V |
16 | 15 | f1oen 8965 | . 2 ⊢ ((𝑅 ↾ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}):{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}–1-1-onto→{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} → {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ≈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) |
17 | hasheni 14305 | . 2 ⊢ ({𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ≈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} → (♯‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) = (♯‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) | |
18 | 11, 16, 17 | mp2b 10 | 1 ⊢ (♯‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) = (♯‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 ∀wral 3053 {crab 3424 Vcvv 3466 ∖ cdif 3937 ∩ cin 3939 ifcif 4520 𝒫 cpw 4594 class class class wbr 5138 ↦ cmpt 5221 ↾ cres 5668 “ cima 5669 –1-1-onto→wf1o 6532 ‘cfv 6533 (class class class)co 7401 ≈ cen 8932 infcinf 9432 ℝcr 11105 0cc0 11106 1c1 11107 + caddc 11109 < clt 11245 ≤ cle 11246 − cmin 11441 / cdiv 11868 ℕcn 12209 ℤcz 12555 ...cfz 13481 ♯chash 14287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oadd 8465 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-dju 9892 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-fz 13482 df-hash 14288 |
This theorem is referenced by: ballotth 34025 |
Copyright terms: Public domain | W3C validator |