Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elid3 | Structured version Visualization version GIF version |
Description: Characterization of the couples in I whose first component is a setvar. (Contributed by BJ, 29-Mar-2020.) |
Ref | Expression |
---|---|
bj-elid3 | ⊢ (〈𝑥, 𝐴〉 ∈ I ↔ 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3435 | . 2 ⊢ 𝑥 ∈ V | |
2 | bj-opelidb1 35311 | . 2 ⊢ (〈𝑥, 𝐴〉 ∈ I ↔ (𝑥 ∈ V ∧ 𝑥 = 𝐴)) | |
3 | 1, 2 | mpbiran 706 | 1 ⊢ (〈𝑥, 𝐴〉 ∈ I ↔ 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3431 〈cop 4569 I cid 5485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-opab 5138 df-id 5486 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |