Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elid3 Structured version   Visualization version   GIF version

Theorem bj-elid3 36555
Description: Characterization of the couples in I whose first component is a setvar. (Contributed by BJ, 29-Mar-2020.)
Assertion
Ref Expression
bj-elid3 (⟨𝑥, 𝐴⟩ ∈ I ↔ 𝑥 = 𝐴)

Proof of Theorem bj-elid3
StepHypRef Expression
1 vex 3472 . 2 𝑥 ∈ V
2 bj-opelidb1 36541 . 2 (⟨𝑥, 𝐴⟩ ∈ I ↔ (𝑥 ∈ V ∧ 𝑥 = 𝐴))
31, 2mpbiran 706 1 (⟨𝑥, 𝐴⟩ ∈ I ↔ 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wcel 2098  Vcvv 3468  cop 4629   I cid 5566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-opab 5204  df-id 5567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator