Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elid3 Structured version   Visualization version   GIF version

Theorem bj-elid3 35325
Description: Characterization of the couples in I whose first component is a setvar. (Contributed by BJ, 29-Mar-2020.)
Assertion
Ref Expression
bj-elid3 (⟨𝑥, 𝐴⟩ ∈ I ↔ 𝑥 = 𝐴)

Proof of Theorem bj-elid3
StepHypRef Expression
1 vex 3435 . 2 𝑥 ∈ V
2 bj-opelidb1 35311 . 2 (⟨𝑥, 𝐴⟩ ∈ I ↔ (𝑥 ∈ V ∧ 𝑥 = 𝐴))
31, 2mpbiran 706 1 (⟨𝑥, 𝐴⟩ ∈ I ↔ 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  Vcvv 3431  cop 4569   I cid 5485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3433  df-dif 3891  df-un 3893  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-opab 5138  df-id 5486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator