| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elid3 | Structured version Visualization version GIF version | ||
| Description: Characterization of the couples in I whose first component is a setvar. (Contributed by BJ, 29-Mar-2020.) |
| Ref | Expression |
|---|---|
| bj-elid3 | ⊢ (〈𝑥, 𝐴〉 ∈ I ↔ 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | bj-opelidb1 37117 | . 2 ⊢ (〈𝑥, 𝐴〉 ∈ I ↔ (𝑥 ∈ V ∧ 𝑥 = 𝐴)) | |
| 3 | 1, 2 | mpbiran 709 | 1 ⊢ (〈𝑥, 𝐴〉 ∈ I ↔ 𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 I cid 5547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 df-id 5548 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |