Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-opelidb1ALT Structured version   Visualization version   GIF version

Theorem bj-opelidb1ALT 35264
Description: Characterization of the couples in I. (Contributed by BJ, 29-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-opelidb1ALT (⟨𝐴, 𝐵⟩ ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))

Proof of Theorem bj-opelidb1ALT
StepHypRef Expression
1 df-br 5071 . . 3 (𝐴 I 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ I )
2 reli 5725 . . . 4 Rel I
32brrelex1i 5634 . . 3 (𝐴 I 𝐵𝐴 ∈ V)
41, 3sylbir 234 . 2 (⟨𝐴, 𝐵⟩ ∈ I → 𝐴 ∈ V)
5 inex1g 5238 . . 3 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
6 bj-opelid 35254 . . 3 ((𝐴𝐵) ∈ V → (⟨𝐴, 𝐵⟩ ∈ I ↔ 𝐴 = 𝐵))
75, 6syl 17 . 2 (𝐴 ∈ V → (⟨𝐴, 𝐵⟩ ∈ I ↔ 𝐴 = 𝐵))
84, 7biadanii 818 1 (⟨𝐴, 𝐵⟩ ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  cop 4564   class class class wbr 5070   I cid 5479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator