Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelidb1ALT | Structured version Visualization version GIF version |
Description: Characterization of the couples in I. (Contributed by BJ, 29-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-opelidb1ALT | ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5071 | . . 3 ⊢ (𝐴 I 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ I ) | |
2 | reli 5725 | . . . 4 ⊢ Rel I | |
3 | 2 | brrelex1i 5634 | . . 3 ⊢ (𝐴 I 𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | sylbir 234 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ I → 𝐴 ∈ V) |
5 | inex1g 5238 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) ∈ V) | |
6 | bj-opelid 35254 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ V → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ V → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) |
8 | 4, 7 | biadanii 818 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 〈cop 4564 class class class wbr 5070 I cid 5479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |