| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelidb1ALT | Structured version Visualization version GIF version | ||
| Description: Characterization of the couples in I. (Contributed by BJ, 29-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-opelidb1ALT | ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5125 | . . 3 ⊢ (𝐴 I 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ I ) | |
| 2 | reli 5810 | . . . 4 ⊢ Rel I | |
| 3 | 2 | brrelex1i 5715 | . . 3 ⊢ (𝐴 I 𝐵 → 𝐴 ∈ V) |
| 4 | 1, 3 | sylbir 235 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ I → 𝐴 ∈ V) |
| 5 | inex1g 5294 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) ∈ V) | |
| 6 | bj-opelid 37179 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ V → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ V → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) |
| 8 | 4, 7 | biadanii 821 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 〈cop 4612 class class class wbr 5124 I cid 5552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |