Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elid4 | Structured version Visualization version GIF version |
Description: Characterization of the elements of I. (Contributed by BJ, 22-Jun-2019.) |
Ref | Expression |
---|---|
bj-elid4 | ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 ∈ I ↔ (1st ‘𝐴) = (2nd ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 7738 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
2 | eleq1 2839 | . . . 4 ⊢ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 → (𝐴 ∈ I ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ I )) | |
3 | 2 | adantl 485 | . . 3 ⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) → (𝐴 ∈ I ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ I )) |
4 | fvex 6676 | . . . . 5 ⊢ (2nd ‘𝐴) ∈ V | |
5 | 4 | inex2 5192 | . . . 4 ⊢ ((1st ‘𝐴) ∩ (2nd ‘𝐴)) ∈ V |
6 | bj-opelid 34885 | . . . 4 ⊢ (((1st ‘𝐴) ∩ (2nd ‘𝐴)) ∈ V → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ I ↔ (1st ‘𝐴) = (2nd ‘𝐴))) | |
7 | 5, 6 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ I ↔ (1st ‘𝐴) = (2nd ‘𝐴))) |
8 | 3, 7 | bitrd 282 | . 2 ⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) → (𝐴 ∈ I ↔ (1st ‘𝐴) = (2nd ‘𝐴))) |
9 | 1, 8 | mpdan 686 | 1 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 ∈ I ↔ (1st ‘𝐴) = (2nd ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∩ cin 3859 〈cop 4531 I cid 5433 × cxp 5526 ‘cfv 6340 1st c1st 7697 2nd c2nd 7698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-iota 6299 df-fun 6342 df-fv 6348 df-1st 7699 df-2nd 7700 |
This theorem is referenced by: bj-elid5 34898 bj-elid6 34899 bj-eldiag 34905 |
Copyright terms: Public domain | W3C validator |