Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elid4 Structured version   Visualization version   GIF version

Theorem bj-elid4 37156
Description: Characterization of the elements of I. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-elid4 (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))

Proof of Theorem bj-elid4
StepHypRef Expression
1 1st2nd2 8007 . 2 (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 eleq1 2816 . . . 4 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → (𝐴 ∈ I ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ I ))
32adantl 481 . . 3 ((𝐴 ∈ (𝑉 × 𝑊) ∧ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩) → (𝐴 ∈ I ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ I ))
4 fvex 6871 . . . . 5 (2nd𝐴) ∈ V
54inex2 5273 . . . 4 ((1st𝐴) ∩ (2nd𝐴)) ∈ V
6 bj-opelid 37144 . . . 4 (((1st𝐴) ∩ (2nd𝐴)) ∈ V → (⟨(1st𝐴), (2nd𝐴)⟩ ∈ I ↔ (1st𝐴) = (2nd𝐴)))
75, 6mp1i 13 . . 3 ((𝐴 ∈ (𝑉 × 𝑊) ∧ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩) → (⟨(1st𝐴), (2nd𝐴)⟩ ∈ I ↔ (1st𝐴) = (2nd𝐴)))
83, 7bitrd 279 . 2 ((𝐴 ∈ (𝑉 × 𝑊) ∧ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))
91, 8mpdan 687 1 (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  cop 4595   I cid 5532   × cxp 5636  cfv 6511  1st c1st 7966  2nd c2nd 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-1st 7968  df-2nd 7969
This theorem is referenced by:  bj-elid5  37157  bj-elid6  37158  bj-eldiag  37164
  Copyright terms: Public domain W3C validator