Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elid4 Structured version   Visualization version   GIF version

Theorem bj-elid4 35339
Description: Characterization of the elements of I. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-elid4 (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))

Proof of Theorem bj-elid4
StepHypRef Expression
1 1st2nd2 7870 . 2 (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 eleq1 2826 . . . 4 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → (𝐴 ∈ I ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ I ))
32adantl 482 . . 3 ((𝐴 ∈ (𝑉 × 𝑊) ∧ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩) → (𝐴 ∈ I ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ I ))
4 fvex 6787 . . . . 5 (2nd𝐴) ∈ V
54inex2 5242 . . . 4 ((1st𝐴) ∩ (2nd𝐴)) ∈ V
6 bj-opelid 35327 . . . 4 (((1st𝐴) ∩ (2nd𝐴)) ∈ V → (⟨(1st𝐴), (2nd𝐴)⟩ ∈ I ↔ (1st𝐴) = (2nd𝐴)))
75, 6mp1i 13 . . 3 ((𝐴 ∈ (𝑉 × 𝑊) ∧ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩) → (⟨(1st𝐴), (2nd𝐴)⟩ ∈ I ↔ (1st𝐴) = (2nd𝐴)))
83, 7bitrd 278 . 2 ((𝐴 ∈ (𝑉 × 𝑊) ∧ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))
91, 8mpdan 684 1 (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  cop 4567   I cid 5488   × cxp 5587  cfv 6433  1st c1st 7829  2nd c2nd 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-1st 7831  df-2nd 7832
This theorem is referenced by:  bj-elid5  35340  bj-elid6  35341  bj-eldiag  35347
  Copyright terms: Public domain W3C validator