Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elid4 Structured version   Visualization version   GIF version

Theorem bj-elid4 37110
Description: Characterization of the elements of I. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-elid4 (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))

Proof of Theorem bj-elid4
StepHypRef Expression
1 1st2nd2 8036 . 2 (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 eleq1 2821 . . . 4 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → (𝐴 ∈ I ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ I ))
32adantl 481 . . 3 ((𝐴 ∈ (𝑉 × 𝑊) ∧ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩) → (𝐴 ∈ I ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ I ))
4 fvex 6900 . . . . 5 (2nd𝐴) ∈ V
54inex2 5300 . . . 4 ((1st𝐴) ∩ (2nd𝐴)) ∈ V
6 bj-opelid 37098 . . . 4 (((1st𝐴) ∩ (2nd𝐴)) ∈ V → (⟨(1st𝐴), (2nd𝐴)⟩ ∈ I ↔ (1st𝐴) = (2nd𝐴)))
75, 6mp1i 13 . . 3 ((𝐴 ∈ (𝑉 × 𝑊) ∧ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩) → (⟨(1st𝐴), (2nd𝐴)⟩ ∈ I ↔ (1st𝐴) = (2nd𝐴)))
83, 7bitrd 279 . 2 ((𝐴 ∈ (𝑉 × 𝑊) ∧ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))
91, 8mpdan 687 1 (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3464  cin 3932  cop 4614   I cid 5559   × cxp 5665  cfv 6542  1st c1st 7995  2nd c2nd 7996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-iota 6495  df-fun 6544  df-fv 6550  df-1st 7997  df-2nd 7998
This theorem is referenced by:  bj-elid5  37111  bj-elid6  37112  bj-eldiag  37118
  Copyright terms: Public domain W3C validator