Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ideqg Structured version   Visualization version   GIF version

Theorem bj-ideqg 35255
Description: Characterization of the classes related by the identity relation when their intersection is a set. Note that the antecedent is more general than either class being a set. (Contributed by NM, 30-Apr-2004.) Weaken the antecedent to sethood of the intersection. (Revised by BJ, 24-Dec-2023.)

TODO: replace ideqg 5749, or at least prove ideqg 5749 from it.

Assertion
Ref Expression
bj-ideqg ((𝐴𝐵) ∈ 𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))

Proof of Theorem bj-ideqg
StepHypRef Expression
1 df-br 5071 . 2 (𝐴 I 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ I )
2 bj-opelid 35254 . 2 ((𝐴𝐵) ∈ 𝑉 → (⟨𝐴, 𝐵⟩ ∈ I ↔ 𝐴 = 𝐵))
31, 2syl5bb 282 1 ((𝐴𝐵) ∈ 𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  cin 3882  cop 4564   class class class wbr 5070   I cid 5479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480
This theorem is referenced by:  bj-ideqb  35257
  Copyright terms: Public domain W3C validator