Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ideqg Structured version   Visualization version   GIF version

Theorem bj-ideqg 37145
Description: Characterization of the classes related by the identity relation when their intersection is a set. Note that the antecedent is more general than either class being a set. (Contributed by NM, 30-Apr-2004.) Weaken the antecedent to sethood of the intersection. (Revised by BJ, 24-Dec-2023.)

TODO: replace ideqg 5815, or at least prove ideqg 5815 from it.

Assertion
Ref Expression
bj-ideqg ((𝐴𝐵) ∈ 𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))

Proof of Theorem bj-ideqg
StepHypRef Expression
1 df-br 5108 . 2 (𝐴 I 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ I )
2 bj-opelid 37144 . 2 ((𝐴𝐵) ∈ 𝑉 → (⟨𝐴, 𝐵⟩ ∈ I ↔ 𝐴 = 𝐵))
31, 2bitrid 283 1 ((𝐴𝐵) ∈ 𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cin 3913  cop 4595   class class class wbr 5107   I cid 5532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533
This theorem is referenced by:  bj-ideqb  37147
  Copyright terms: Public domain W3C validator