| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ideqg | Structured version Visualization version GIF version | ||
| Description: Characterization of the
classes related by the identity relation when
their intersection is a set. Note that the antecedent is more general
than either class being a set. (Contributed by NM, 30-Apr-2004.) Weaken
the antecedent to sethood of the intersection. (Revised by BJ,
24-Dec-2023.)
TODO: replace ideqg 5796, or at least prove ideqg 5796 from it. |
| Ref | Expression |
|---|---|
| bj-ideqg | ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5094 | . 2 ⊢ (𝐴 I 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ I ) | |
| 2 | bj-opelid 37207 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | bitrid 283 | 1 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 〈cop 4581 class class class wbr 5093 I cid 5513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 |
| This theorem is referenced by: bj-ideqb 37210 |
| Copyright terms: Public domain | W3C validator |