Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ideqb Structured version   Visualization version   GIF version

Theorem bj-ideqb 35330
Description: Characterization of classes related by the identity relation. (Contributed by BJ, 24-Dec-2023.)
Assertion
Ref Expression
bj-ideqb (𝐴 I 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))

Proof of Theorem bj-ideqb
StepHypRef Expression
1 reli 5736 . . 3 Rel I
21brrelex1i 5643 . 2 (𝐴 I 𝐵𝐴 ∈ V)
3 inex1g 5243 . . 3 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
4 bj-ideqg 35328 . . 3 ((𝐴𝐵) ∈ V → (𝐴 I 𝐵𝐴 = 𝐵))
53, 4syl 17 . 2 (𝐴 ∈ V → (𝐴 I 𝐵𝐴 = 𝐵))
62, 5biadanii 819 1 (𝐴 I 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886   class class class wbr 5074   I cid 5488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator