Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ideqb Structured version   Visualization version   GIF version

Theorem bj-ideqb 36868
Description: Characterization of classes related by the identity relation. (Contributed by BJ, 24-Dec-2023.)
Assertion
Ref Expression
bj-ideqb (𝐴 I 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))

Proof of Theorem bj-ideqb
StepHypRef Expression
1 reli 5834 . . 3 Rel I
21brrelex1i 5740 . 2 (𝐴 I 𝐵𝐴 ∈ V)
3 inex1g 5326 . . 3 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
4 bj-ideqg 36866 . . 3 ((𝐴𝐵) ∈ V → (𝐴 I 𝐵𝐴 = 𝐵))
53, 4syl 17 . 2 (𝐴 ∈ V → (𝐴 I 𝐵𝐴 = 𝐵))
62, 5biadanii 820 1 (𝐴 I 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  cin 3946   class class class wbr 5155   I cid 5581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pr 5435
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-br 5156  df-opab 5218  df-id 5582  df-xp 5690  df-rel 5691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator