Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ideqb | Structured version Visualization version GIF version |
Description: Characterization of classes related by the identity relation. (Contributed by BJ, 24-Dec-2023.) |
Ref | Expression |
---|---|
bj-ideqb | ⊢ (𝐴 I 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5768 | . . 3 ⊢ Rel I | |
2 | 1 | brrelex1i 5674 | . 2 ⊢ (𝐴 I 𝐵 → 𝐴 ∈ V) |
3 | inex1g 5263 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) ∈ V) | |
4 | bj-ideqg 35441 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
6 | 2, 5 | biadanii 819 | 1 ⊢ (𝐴 I 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∩ cin 3897 class class class wbr 5092 I cid 5517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |