Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ideqb Structured version   Visualization version   GIF version

Theorem bj-ideqb 37125
Description: Characterization of classes related by the identity relation. (Contributed by BJ, 24-Dec-2023.)
Assertion
Ref Expression
bj-ideqb (𝐴 I 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))

Proof of Theorem bj-ideqb
StepHypRef Expression
1 reli 5850 . . 3 Rel I
21brrelex1i 5756 . 2 (𝐴 I 𝐵𝐴 ∈ V)
3 inex1g 5337 . . 3 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
4 bj-ideqg 37123 . . 3 ((𝐴𝐵) ∈ V → (𝐴 I 𝐵𝐴 = 𝐵))
53, 4syl 17 . 2 (𝐴 ∈ V → (𝐴 I 𝐵𝐴 = 𝐵))
62, 5biadanii 821 1 (𝐴 I 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975   class class class wbr 5166   I cid 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator