| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ideqb | Structured version Visualization version GIF version | ||
| Description: Characterization of classes related by the identity relation. (Contributed by BJ, 24-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-ideqb | ⊢ (𝐴 I 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reli 5792 | . . 3 ⊢ Rel I | |
| 2 | 1 | brrelex1i 5697 | . 2 ⊢ (𝐴 I 𝐵 → 𝐴 ∈ V) |
| 3 | inex1g 5277 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) ∈ V) | |
| 4 | bj-ideqg 37152 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| 6 | 2, 5 | biadanii 821 | 1 ⊢ (𝐴 I 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 class class class wbr 5110 I cid 5535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |