![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ideqb | Structured version Visualization version GIF version |
Description: Characterization of classes related by the identity relation. (Contributed by BJ, 24-Dec-2023.) |
Ref | Expression |
---|---|
bj-ideqb | ⊢ (𝐴 I 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5834 | . . 3 ⊢ Rel I | |
2 | 1 | brrelex1i 5740 | . 2 ⊢ (𝐴 I 𝐵 → 𝐴 ∈ V) |
3 | inex1g 5326 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) ∈ V) | |
4 | bj-ideqg 36866 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
6 | 2, 5 | biadanii 820 | 1 ⊢ (𝐴 I 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ∩ cin 3946 class class class wbr 5155 I cid 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pr 5435 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5156 df-opab 5218 df-id 5582 df-xp 5690 df-rel 5691 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |