Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1448 Structured version   Visualization version   GIF version

Theorem bnj1448 33027
Description: Technical lemma for bnj60 33042. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1448.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1448.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1448.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1448.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1448.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1448.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1448.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1448.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1448.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1448.10 𝑃 = 𝐻
bnj1448.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1448.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1448.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
Assertion
Ref Expression
bnj1448 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑓(𝑄𝑧) = (𝐺𝑊))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐺   𝑅,𝑓   𝑥,𝑓   𝑧,𝑓
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐴(𝑥,𝑦,𝑧,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑅(𝑥,𝑦,𝑧,𝑑)   𝐺(𝑥,𝑦,𝑧,𝑑)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1448
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1448.12 . . . . 5 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
2 bnj1448.10 . . . . . . 7 𝑃 = 𝐻
3 bnj1448.9 . . . . . . . . . 10 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
43bnj1317 32801 . . . . . . . . 9 (𝑤𝐻 → ∀𝑓 𝑤𝐻)
54nfcii 2891 . . . . . . . 8 𝑓𝐻
65nfuni 4846 . . . . . . 7 𝑓 𝐻
72, 6nfcxfr 2905 . . . . . 6 𝑓𝑃
8 nfcv 2907 . . . . . . . 8 𝑓𝑥
9 nfcv 2907 . . . . . . . . 9 𝑓𝐺
10 bnj1448.11 . . . . . . . . . 10 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
11 nfcv 2907 . . . . . . . . . . . 12 𝑓 pred(𝑥, 𝐴, 𝑅)
127, 11nfres 5893 . . . . . . . . . . 11 𝑓(𝑃 ↾ pred(𝑥, 𝐴, 𝑅))
138, 12nfop 4820 . . . . . . . . . 10 𝑓𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
1410, 13nfcxfr 2905 . . . . . . . . 9 𝑓𝑍
159, 14nffv 6784 . . . . . . . 8 𝑓(𝐺𝑍)
168, 15nfop 4820 . . . . . . 7 𝑓𝑥, (𝐺𝑍)⟩
1716nfsn 4643 . . . . . 6 𝑓{⟨𝑥, (𝐺𝑍)⟩}
187, 17nfun 4099 . . . . 5 𝑓(𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
191, 18nfcxfr 2905 . . . 4 𝑓𝑄
20 nfcv 2907 . . . 4 𝑓𝑧
2119, 20nffv 6784 . . 3 𝑓(𝑄𝑧)
22 bnj1448.13 . . . . 5 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
23 nfcv 2907 . . . . . . 7 𝑓 pred(𝑧, 𝐴, 𝑅)
2419, 23nfres 5893 . . . . . 6 𝑓(𝑄 ↾ pred(𝑧, 𝐴, 𝑅))
2520, 24nfop 4820 . . . . 5 𝑓𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
2622, 25nfcxfr 2905 . . . 4 𝑓𝑊
279, 26nffv 6784 . . 3 𝑓(𝐺𝑊)
2821, 27nfeq 2920 . 2 𝑓(𝑄𝑧) = (𝐺𝑊)
2928nf5ri 2188 1 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑓(𝑄𝑧) = (𝐺𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086  wal 1537   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  {crab 3068  [wsbc 3716  cun 3885  wss 3887  c0 4256  {csn 4561  cop 4567   cuni 4839   class class class wbr 5074  dom cdm 5589  cres 5591   Fn wfn 6428  cfv 6433   predc-bnj14 32667   FrSe w-bnj15 32671   trClc-bnj18 32673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-res 5601  df-iota 6391  df-fv 6441
This theorem is referenced by:  bnj1450  33030  bnj1463  33035
  Copyright terms: Public domain W3C validator