| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1448 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35076. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1448.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1448.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1448.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1448.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| bnj1448.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
| bnj1448.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
| bnj1448.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
| bnj1448.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
| bnj1448.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
| bnj1448.10 | ⊢ 𝑃 = ∪ 𝐻 |
| bnj1448.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1448.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
| bnj1448.13 | ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 |
| Ref | Expression |
|---|---|
| bnj1448 | ⊢ ((𝑄‘𝑧) = (𝐺‘𝑊) → ∀𝑓(𝑄‘𝑧) = (𝐺‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1448.12 | . . . . 5 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
| 2 | bnj1448.10 | . . . . . . 7 ⊢ 𝑃 = ∪ 𝐻 | |
| 3 | bnj1448.9 | . . . . . . . . . 10 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
| 4 | 3 | bnj1317 34835 | . . . . . . . . 9 ⊢ (𝑤 ∈ 𝐻 → ∀𝑓 𝑤 ∈ 𝐻) |
| 5 | 4 | nfcii 2894 | . . . . . . . 8 ⊢ Ⅎ𝑓𝐻 |
| 6 | 5 | nfuni 4914 | . . . . . . 7 ⊢ Ⅎ𝑓∪ 𝐻 |
| 7 | 2, 6 | nfcxfr 2903 | . . . . . 6 ⊢ Ⅎ𝑓𝑃 |
| 8 | nfcv 2905 | . . . . . . . 8 ⊢ Ⅎ𝑓𝑥 | |
| 9 | nfcv 2905 | . . . . . . . . 9 ⊢ Ⅎ𝑓𝐺 | |
| 10 | bnj1448.11 | . . . . . . . . . 10 ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 11 | nfcv 2905 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑓 pred(𝑥, 𝐴, 𝑅) | |
| 12 | 7, 11 | nfres 5999 | . . . . . . . . . . 11 ⊢ Ⅎ𝑓(𝑃 ↾ pred(𝑥, 𝐴, 𝑅)) |
| 13 | 8, 12 | nfop 4889 | . . . . . . . . . 10 ⊢ Ⅎ𝑓〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| 14 | 10, 13 | nfcxfr 2903 | . . . . . . . . 9 ⊢ Ⅎ𝑓𝑍 |
| 15 | 9, 14 | nffv 6916 | . . . . . . . 8 ⊢ Ⅎ𝑓(𝐺‘𝑍) |
| 16 | 8, 15 | nfop 4889 | . . . . . . 7 ⊢ Ⅎ𝑓〈𝑥, (𝐺‘𝑍)〉 |
| 17 | 16 | nfsn 4707 | . . . . . 6 ⊢ Ⅎ𝑓{〈𝑥, (𝐺‘𝑍)〉} |
| 18 | 7, 17 | nfun 4170 | . . . . 5 ⊢ Ⅎ𝑓(𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
| 19 | 1, 18 | nfcxfr 2903 | . . . 4 ⊢ Ⅎ𝑓𝑄 |
| 20 | nfcv 2905 | . . . 4 ⊢ Ⅎ𝑓𝑧 | |
| 21 | 19, 20 | nffv 6916 | . . 3 ⊢ Ⅎ𝑓(𝑄‘𝑧) |
| 22 | bnj1448.13 | . . . . 5 ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 | |
| 23 | nfcv 2905 | . . . . . . 7 ⊢ Ⅎ𝑓 pred(𝑧, 𝐴, 𝑅) | |
| 24 | 19, 23 | nfres 5999 | . . . . . 6 ⊢ Ⅎ𝑓(𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) |
| 25 | 20, 24 | nfop 4889 | . . . . 5 ⊢ Ⅎ𝑓〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 |
| 26 | 22, 25 | nfcxfr 2903 | . . . 4 ⊢ Ⅎ𝑓𝑊 |
| 27 | 9, 26 | nffv 6916 | . . 3 ⊢ Ⅎ𝑓(𝐺‘𝑊) |
| 28 | 21, 27 | nfeq 2919 | . 2 ⊢ Ⅎ𝑓(𝑄‘𝑧) = (𝐺‘𝑊) |
| 29 | 28 | nf5ri 2195 | 1 ⊢ ((𝑄‘𝑧) = (𝐺‘𝑊) → ∀𝑓(𝑄‘𝑧) = (𝐺‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2714 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 {crab 3436 [wsbc 3788 ∪ cun 3949 ⊆ wss 3951 ∅c0 4333 {csn 4626 〈cop 4632 ∪ cuni 4907 class class class wbr 5143 dom cdm 5685 ↾ cres 5687 Fn wfn 6556 ‘cfv 6561 predc-bnj14 34702 FrSe w-bnj15 34706 trClc-bnj18 34708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-res 5697 df-iota 6514 df-fv 6569 |
| This theorem is referenced by: bnj1450 35064 bnj1463 35069 |
| Copyright terms: Public domain | W3C validator |