| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1520 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj1500 35058. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1520.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1520.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1520.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1520.4 | ⊢ 𝐹 = ∪ 𝐶 |
| Ref | Expression |
|---|---|
| bnj1520 | ⊢ ((𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) → ∀𝑓(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1520.4 | . . . . 5 ⊢ 𝐹 = ∪ 𝐶 | |
| 2 | bnj1520.3 | . . . . . . . 8 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 3 | 2 | bnj1317 34811 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐶 → ∀𝑓 𝑤 ∈ 𝐶) |
| 4 | 3 | nfcii 2880 | . . . . . 6 ⊢ Ⅎ𝑓𝐶 |
| 5 | 4 | nfuni 4878 | . . . . 5 ⊢ Ⅎ𝑓∪ 𝐶 |
| 6 | 1, 5 | nfcxfr 2889 | . . . 4 ⊢ Ⅎ𝑓𝐹 |
| 7 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑓𝑥 | |
| 8 | 6, 7 | nffv 6868 | . . 3 ⊢ Ⅎ𝑓(𝐹‘𝑥) |
| 9 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑓𝐺 | |
| 10 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑓 pred(𝑥, 𝐴, 𝑅) | |
| 11 | 6, 10 | nfres 5952 | . . . . 5 ⊢ Ⅎ𝑓(𝐹 ↾ pred(𝑥, 𝐴, 𝑅)) |
| 12 | 7, 11 | nfop 4853 | . . . 4 ⊢ Ⅎ𝑓〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| 13 | 9, 12 | nffv 6868 | . . 3 ⊢ Ⅎ𝑓(𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) |
| 14 | 8, 13 | nfeq 2905 | . 2 ⊢ Ⅎ𝑓(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) |
| 15 | 14 | nf5ri 2196 | 1 ⊢ ((𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) → ∀𝑓(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 {cab 2707 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 〈cop 4595 ∪ cuni 4871 ↾ cres 5640 Fn wfn 6506 ‘cfv 6511 predc-bnj14 34678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-res 5650 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: bnj1501 35057 |
| Copyright terms: Public domain | W3C validator |