Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1520 Structured version   Visualization version   GIF version

Theorem bnj1520 35056
Description: Technical lemma for bnj1500 35058. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1520.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1520.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1520.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1520.4 𝐹 = 𝐶
Assertion
Ref Expression
bnj1520 ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑓(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐺   𝑅,𝑓   𝑥,𝑓
Allowed substitution hints:   𝐴(𝑥,𝑑)   𝐵(𝑥,𝑓,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝑅(𝑥,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝐺(𝑥,𝑑)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1520
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1520.4 . . . . 5 𝐹 = 𝐶
2 bnj1520.3 . . . . . . . 8 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
32bnj1317 34811 . . . . . . 7 (𝑤𝐶 → ∀𝑓 𝑤𝐶)
43nfcii 2880 . . . . . 6 𝑓𝐶
54nfuni 4878 . . . . 5 𝑓 𝐶
61, 5nfcxfr 2889 . . . 4 𝑓𝐹
7 nfcv 2891 . . . 4 𝑓𝑥
86, 7nffv 6868 . . 3 𝑓(𝐹𝑥)
9 nfcv 2891 . . . 4 𝑓𝐺
10 nfcv 2891 . . . . . 6 𝑓 pred(𝑥, 𝐴, 𝑅)
116, 10nfres 5952 . . . . 5 𝑓(𝐹 ↾ pred(𝑥, 𝐴, 𝑅))
127, 11nfop 4853 . . . 4 𝑓𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩
139, 12nffv 6868 . . 3 𝑓(𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
148, 13nfeq 2905 . 2 𝑓(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
1514nf5ri 2196 1 ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑓(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  {cab 2707  wral 3044  wrex 3053  wss 3914  cop 4595   cuni 4871  cres 5640   Fn wfn 6506  cfv 6511   predc-bnj14 34678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-res 5650  df-iota 6464  df-fv 6519
This theorem is referenced by:  bnj1501  35057
  Copyright terms: Public domain W3C validator