![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1520 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj1500 35044. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1520.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1520.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1520.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1520.4 | ⊢ 𝐹 = ∪ 𝐶 |
Ref | Expression |
---|---|
bnj1520 | ⊢ ((𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) → ∀𝑓(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1520.4 | . . . . 5 ⊢ 𝐹 = ∪ 𝐶 | |
2 | bnj1520.3 | . . . . . . . 8 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
3 | 2 | bnj1317 34797 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐶 → ∀𝑓 𝑤 ∈ 𝐶) |
4 | 3 | nfcii 2897 | . . . . . 6 ⊢ Ⅎ𝑓𝐶 |
5 | 4 | nfuni 4938 | . . . . 5 ⊢ Ⅎ𝑓∪ 𝐶 |
6 | 1, 5 | nfcxfr 2906 | . . . 4 ⊢ Ⅎ𝑓𝐹 |
7 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑓𝑥 | |
8 | 6, 7 | nffv 6930 | . . 3 ⊢ Ⅎ𝑓(𝐹‘𝑥) |
9 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑓𝐺 | |
10 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑓 pred(𝑥, 𝐴, 𝑅) | |
11 | 6, 10 | nfres 6011 | . . . . 5 ⊢ Ⅎ𝑓(𝐹 ↾ pred(𝑥, 𝐴, 𝑅)) |
12 | 7, 11 | nfop 4913 | . . . 4 ⊢ Ⅎ𝑓〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
13 | 9, 12 | nffv 6930 | . . 3 ⊢ Ⅎ𝑓(𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) |
14 | 8, 13 | nfeq 2922 | . 2 ⊢ Ⅎ𝑓(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) |
15 | 14 | nf5ri 2196 | 1 ⊢ ((𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) → ∀𝑓(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 {cab 2717 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 〈cop 4654 ∪ cuni 4931 ↾ cres 5702 Fn wfn 6568 ‘cfv 6573 predc-bnj14 34664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-res 5712 df-iota 6525 df-fv 6581 |
This theorem is referenced by: bnj1501 35043 |
Copyright terms: Public domain | W3C validator |