Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj157 Structured version   Visualization version   GIF version

Theorem bnj157 34871
Description: Well-founded induction restricted to a set (𝐴 ∈ V). The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj157.1 (𝜓 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑))
bnj157.2 𝐴 ∈ V
bnj157.3 𝑅 Fr 𝐴
Assertion
Ref Expression
bnj157 (∀𝑥𝐴 (𝜓𝜑) → ∀𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem bnj157
StepHypRef Expression
1 bnj157.3 . 2 𝑅 Fr 𝐴
2 bnj157.2 . . 3 𝐴 ∈ V
3 bnj157.1 . . 3 (𝜓 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑))
42, 3bnj110 34870 . 2 ((𝑅 Fr 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑)) → ∀𝑥𝐴 𝜑)
51, 4mpan 690 1 (∀𝑥𝐴 (𝜓𝜑) → ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2111  wral 3047  Vcvv 3436  [wsbc 3736   class class class wbr 5089   Fr wfr 5564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-fr 5567
This theorem is referenced by:  bnj852  34933
  Copyright terms: Public domain W3C validator