Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj157 | Structured version Visualization version GIF version |
Description: Well-founded induction restricted to a set (𝐴 ∈ V). The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj157.1 | ⊢ (𝜓 ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)) |
bnj157.2 | ⊢ 𝐴 ∈ V |
bnj157.3 | ⊢ 𝑅 Fr 𝐴 |
Ref | Expression |
---|---|
bnj157 | ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) → ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj157.3 | . 2 ⊢ 𝑅 Fr 𝐴 | |
2 | bnj157.2 | . . 3 ⊢ 𝐴 ∈ V | |
3 | bnj157.1 | . . 3 ⊢ (𝜓 ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)) | |
4 | 2, 3 | bnj110 32838 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) → ∀𝑥 ∈ 𝐴 𝜑) |
5 | 1, 4 | mpan 687 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) → ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 [wsbc 3716 class class class wbr 5074 Fr wfr 5541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-fr 5544 |
This theorem is referenced by: bnj852 32901 |
Copyright terms: Public domain | W3C validator |