|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > relbrcnv | Structured version Visualization version GIF version | ||
| Description: When 𝑅 is a relation, the sethood assumptions on brcnv 5893 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| relbrcnv.1 | ⊢ Rel 𝑅 | 
| Ref | Expression | 
|---|---|
| relbrcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relbrcnv.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | relbrcnvg 6123 | . 2 ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 class class class wbr 5143 ◡ccnv 5684 Rel wrel 5690 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 | 
| This theorem is referenced by: compssiso 10414 fneval 36353 br1cnvinxp 38257 brcnvep 38266 brid 38307 brcnvrabga 38343 br1cnvxrn2 38397 br1cnvssrres 38506 brcnvssr 38507 brco2f1o 44045 brco3f1o 44046 neicvgnvor 44129 | 
| Copyright terms: Public domain | W3C validator |