![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relbrcnv | Structured version Visualization version GIF version |
Description: When 𝑅 is a relation, the sethood assumptions on brcnv 5907 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
relbrcnv.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
relbrcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relbrcnv.1 | . 2 ⊢ Rel 𝑅 | |
2 | relbrcnvg 6135 | . 2 ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 class class class wbr 5166 ◡ccnv 5699 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: compssiso 10443 fneval 36318 br1cnvinxp 38212 brcnvep 38221 brid 38262 brcnvrabga 38298 br1cnvxrn2 38352 br1cnvssrres 38461 brcnvssr 38462 brco2f1o 43994 brco3f1o 43995 neicvgnvor 44078 |
Copyright terms: Public domain | W3C validator |