| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relbrcnv | Structured version Visualization version GIF version | ||
| Description: When 𝑅 is a relation, the sethood assumptions on brcnv 5825 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| relbrcnv.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| relbrcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relbrcnv.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | relbrcnvg 6056 | . 2 ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 class class class wbr 5092 ◡ccnv 5618 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 |
| This theorem is referenced by: compssiso 10268 fneval 36346 br1cnvinxp 38251 brcnvep 38260 brid 38300 brcnvrabga 38330 br1cnvxrn2 38388 br1cnvssrres 38502 brcnvssr 38503 brco2f1o 44025 brco3f1o 44026 neicvgnvor 44109 |
| Copyright terms: Public domain | W3C validator |