| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relbrcnv | Structured version Visualization version GIF version | ||
| Description: When 𝑅 is a relation, the sethood assumptions on brcnv 5821 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| relbrcnv.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| relbrcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relbrcnv.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | relbrcnvg 6053 | . 2 ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 class class class wbr 5089 ◡ccnv 5613 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 |
| This theorem is referenced by: compssiso 10265 fneval 36396 br1cnvinxp 38292 brcnvep 38301 brid 38343 brcnvrabga 38373 br1cnvxrn2 38442 br1cnvssrres 38596 brcnvssr 38597 brco2f1o 44124 brco3f1o 44125 neicvgnvor 44208 |
| Copyright terms: Public domain | W3C validator |