MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relbrcnv Structured version   Visualization version   GIF version

Theorem relbrcnv 6106
Description: When 𝑅 is a relation, the sethood assumptions on brcnv 5882 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.)
Hypothesis
Ref Expression
relbrcnv.1 Rel 𝑅
Assertion
Ref Expression
relbrcnv (𝐴𝑅𝐵𝐵𝑅𝐴)

Proof of Theorem relbrcnv
StepHypRef Expression
1 relbrcnv.1 . 2 Rel 𝑅
2 relbrcnvg 6104 . 2 (Rel 𝑅 → (𝐴𝑅𝐵𝐵𝑅𝐴))
31, 2ax-mp 5 1 (𝐴𝑅𝐵𝐵𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   class class class wbr 5148  ccnv 5675  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684
This theorem is referenced by:  compssiso  10368  fneval  35232  br1cnvinxp  37119  brcnvep  37128  brid  37170  brcnvrabga  37206  br1cnvxrn2  37261  br1cnvssrres  37370  brcnvssr  37371  brco2f1o  42773  brco3f1o  42774  neicvgnvor  42857
  Copyright terms: Public domain W3C validator