Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cosscnvxrn Structured version   Visualization version   GIF version

Theorem br1cosscnvxrn 38471
Description: 𝐴 and 𝐵 are cosets by the converse range Cartesian product: a binary relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
Assertion
Ref Expression
br1cosscnvxrn ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵)))

Proof of Theorem br1cosscnvxrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecxrn 38379 . . . . . . 7 (𝐴𝑉 → [𝐴](𝑅𝑆) = {⟨𝑥, 𝑦⟩ ∣ (𝐴𝑅𝑥𝐴𝑆𝑦)})
2 ecxrn 38379 . . . . . . 7 (𝐵𝑊 → [𝐵](𝑅𝑆) = {⟨𝑥, 𝑦⟩ ∣ (𝐵𝑅𝑥𝐵𝑆𝑦)})
31, 2ineqan12d 4173 . . . . . 6 ((𝐴𝑉𝐵𝑊) → ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = ({⟨𝑥, 𝑦⟩ ∣ (𝐴𝑅𝑥𝐴𝑆𝑦)} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝐵𝑅𝑥𝐵𝑆𝑦)}))
4 inopab 5772 . . . . . 6 ({⟨𝑥, 𝑦⟩ ∣ (𝐴𝑅𝑥𝐴𝑆𝑦)} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝐵𝑅𝑥𝐵𝑆𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ ((𝐴𝑅𝑥𝐴𝑆𝑦) ∧ (𝐵𝑅𝑥𝐵𝑆𝑦))}
53, 4eqtrdi 2780 . . . . 5 ((𝐴𝑉𝐵𝑊) → ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = {⟨𝑥, 𝑦⟩ ∣ ((𝐴𝑅𝑥𝐴𝑆𝑦) ∧ (𝐵𝑅𝑥𝐵𝑆𝑦))})
6 an4 656 . . . . . 6 (((𝐴𝑅𝑥𝐴𝑆𝑦) ∧ (𝐵𝑅𝑥𝐵𝑆𝑦)) ↔ ((𝐴𝑅𝑥𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦𝐵𝑆𝑦)))
76opabbii 5159 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝐴𝑅𝑥𝐴𝑆𝑦) ∧ (𝐵𝑅𝑥𝐵𝑆𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝐴𝑅𝑥𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦𝐵𝑆𝑦))}
85, 7eqtrdi 2780 . . . 4 ((𝐴𝑉𝐵𝑊) → ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = {⟨𝑥, 𝑦⟩ ∣ ((𝐴𝑅𝑥𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦𝐵𝑆𝑦))})
98neeq1d 2984 . . 3 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ {⟨𝑥, 𝑦⟩ ∣ ((𝐴𝑅𝑥𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦𝐵𝑆𝑦))} ≠ ∅))
10 opabn0 5496 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ ((𝐴𝑅𝑥𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦𝐵𝑆𝑦))} ≠ ∅ ↔ ∃𝑥𝑦((𝐴𝑅𝑥𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦𝐵𝑆𝑦)))
11 exdistrv 1955 . . . 4 (∃𝑥𝑦((𝐴𝑅𝑥𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦𝐵𝑆𝑦)) ↔ (∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥) ∧ ∃𝑦(𝐴𝑆𝑦𝐵𝑆𝑦)))
1210, 11bitri 275 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ((𝐴𝑅𝑥𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦𝐵𝑆𝑦))} ≠ ∅ ↔ (∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥) ∧ ∃𝑦(𝐴𝑆𝑦𝐵𝑆𝑦)))
139, 12bitrdi 287 . 2 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ (∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥) ∧ ∃𝑦(𝐴𝑆𝑦𝐵𝑆𝑦))))
14 brcosscnv2 38470 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵 ↔ ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅))
15 brcosscnv 38469 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
16 brcosscnv 38469 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝑆𝐵 ↔ ∃𝑦(𝐴𝑆𝑦𝐵𝑆𝑦)))
1715, 16anbi12d 632 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑅𝐵𝐴𝑆𝐵) ↔ (∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥) ∧ ∃𝑦(𝐴𝑆𝑦𝐵𝑆𝑦))))
1813, 14, 173bitr4d 311 1 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  wne 2925  cin 3902  c0 4284   class class class wbr 5092  {copab 5154  ccnv 5618  [cec 8623  cxrn 38174  ccoss 38175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-1st 7924  df-2nd 7925  df-ec 8627  df-xrn 38359  df-coss 38408
This theorem is referenced by:  1cosscnvxrn  38472
  Copyright terms: Public domain W3C validator