Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cosscnvxrn Structured version   Visualization version   GIF version

Theorem br1cosscnvxrn 36936
Description: 𝐴 and 𝐵 are cosets by the converse range Cartesian product: a binary relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
Assertion
Ref Expression
br1cosscnvxrn ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵)))

Proof of Theorem br1cosscnvxrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecxrn 36849 . . . . . . 7 (𝐴𝑉 → [𝐴](𝑅𝑆) = {⟨𝑥, 𝑦⟩ ∣ (𝐴𝑅𝑥𝐴𝑆𝑦)})
2 ecxrn 36849 . . . . . . 7 (𝐵𝑊 → [𝐵](𝑅𝑆) = {⟨𝑥, 𝑦⟩ ∣ (𝐵𝑅𝑥𝐵𝑆𝑦)})
31, 2ineqan12d 4174 . . . . . 6 ((𝐴𝑉𝐵𝑊) → ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = ({⟨𝑥, 𝑦⟩ ∣ (𝐴𝑅𝑥𝐴𝑆𝑦)} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝐵𝑅𝑥𝐵𝑆𝑦)}))
4 inopab 5785 . . . . . 6 ({⟨𝑥, 𝑦⟩ ∣ (𝐴𝑅𝑥𝐴𝑆𝑦)} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝐵𝑅𝑥𝐵𝑆𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ ((𝐴𝑅𝑥𝐴𝑆𝑦) ∧ (𝐵𝑅𝑥𝐵𝑆𝑦))}
53, 4eqtrdi 2792 . . . . 5 ((𝐴𝑉𝐵𝑊) → ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = {⟨𝑥, 𝑦⟩ ∣ ((𝐴𝑅𝑥𝐴𝑆𝑦) ∧ (𝐵𝑅𝑥𝐵𝑆𝑦))})
6 an4 654 . . . . . 6 (((𝐴𝑅𝑥𝐴𝑆𝑦) ∧ (𝐵𝑅𝑥𝐵𝑆𝑦)) ↔ ((𝐴𝑅𝑥𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦𝐵𝑆𝑦)))
76opabbii 5172 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝐴𝑅𝑥𝐴𝑆𝑦) ∧ (𝐵𝑅𝑥𝐵𝑆𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝐴𝑅𝑥𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦𝐵𝑆𝑦))}
85, 7eqtrdi 2792 . . . 4 ((𝐴𝑉𝐵𝑊) → ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = {⟨𝑥, 𝑦⟩ ∣ ((𝐴𝑅𝑥𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦𝐵𝑆𝑦))})
98neeq1d 3003 . . 3 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ {⟨𝑥, 𝑦⟩ ∣ ((𝐴𝑅𝑥𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦𝐵𝑆𝑦))} ≠ ∅))
10 opabn0 5510 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ ((𝐴𝑅𝑥𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦𝐵𝑆𝑦))} ≠ ∅ ↔ ∃𝑥𝑦((𝐴𝑅𝑥𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦𝐵𝑆𝑦)))
11 exdistrv 1959 . . . 4 (∃𝑥𝑦((𝐴𝑅𝑥𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦𝐵𝑆𝑦)) ↔ (∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥) ∧ ∃𝑦(𝐴𝑆𝑦𝐵𝑆𝑦)))
1210, 11bitri 274 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ((𝐴𝑅𝑥𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦𝐵𝑆𝑦))} ≠ ∅ ↔ (∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥) ∧ ∃𝑦(𝐴𝑆𝑦𝐵𝑆𝑦)))
139, 12bitrdi 286 . 2 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ (∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥) ∧ ∃𝑦(𝐴𝑆𝑦𝐵𝑆𝑦))))
14 brcosscnv2 36935 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵 ↔ ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅))
15 brcosscnv 36934 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
16 brcosscnv 36934 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝑆𝐵 ↔ ∃𝑦(𝐴𝑆𝑦𝐵𝑆𝑦)))
1715, 16anbi12d 631 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑅𝐵𝐴𝑆𝐵) ↔ (∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥) ∧ ∃𝑦(𝐴𝑆𝑦𝐵𝑆𝑦))))
1813, 14, 173bitr4d 310 1 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wex 1781  wcel 2106  wne 2943  cin 3909  c0 4282   class class class wbr 5105  {copab 5167  ccnv 5632  [cec 8646  cxrn 36633  ccoss 36634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fo 6502  df-fv 6504  df-1st 7921  df-2nd 7922  df-ec 8650  df-xrn 36833  df-coss 36873
This theorem is referenced by:  1cosscnvxrn  36937
  Copyright terms: Public domain W3C validator