| Step | Hyp | Ref
| Expression |
| 1 | | ecxrn 38410 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → [𝐴](𝑅 ⋉ 𝑆) = {〈𝑥, 𝑦〉 ∣ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)}) |
| 2 | | ecxrn 38410 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑊 → [𝐵](𝑅 ⋉ 𝑆) = {〈𝑥, 𝑦〉 ∣ (𝐵𝑅𝑥 ∧ 𝐵𝑆𝑦)}) |
| 3 | 1, 2 | ineqan12d 4202 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴](𝑅 ⋉ 𝑆) ∩ [𝐵](𝑅 ⋉ 𝑆)) = ({〈𝑥, 𝑦〉 ∣ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)} ∩ {〈𝑥, 𝑦〉 ∣ (𝐵𝑅𝑥 ∧ 𝐵𝑆𝑦)})) |
| 4 | | inopab 5813 |
. . . . . 6
⊢
({〈𝑥, 𝑦〉 ∣ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)} ∩ {〈𝑥, 𝑦〉 ∣ (𝐵𝑅𝑥 ∧ 𝐵𝑆𝑦)}) = {〈𝑥, 𝑦〉 ∣ ((𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦) ∧ (𝐵𝑅𝑥 ∧ 𝐵𝑆𝑦))} |
| 5 | 3, 4 | eqtrdi 2787 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴](𝑅 ⋉ 𝑆) ∩ [𝐵](𝑅 ⋉ 𝑆)) = {〈𝑥, 𝑦〉 ∣ ((𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦) ∧ (𝐵𝑅𝑥 ∧ 𝐵𝑆𝑦))}) |
| 6 | | an4 656 |
. . . . . 6
⊢ (((𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦) ∧ (𝐵𝑅𝑥 ∧ 𝐵𝑆𝑦)) ↔ ((𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦 ∧ 𝐵𝑆𝑦))) |
| 7 | 6 | opabbii 5191 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ((𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦) ∧ (𝐵𝑅𝑥 ∧ 𝐵𝑆𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦 ∧ 𝐵𝑆𝑦))} |
| 8 | 5, 7 | eqtrdi 2787 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴](𝑅 ⋉ 𝑆) ∩ [𝐵](𝑅 ⋉ 𝑆)) = {〈𝑥, 𝑦〉 ∣ ((𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦 ∧ 𝐵𝑆𝑦))}) |
| 9 | 8 | neeq1d 2992 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ 𝑆) ∩ [𝐵](𝑅 ⋉ 𝑆)) ≠ ∅ ↔ {〈𝑥, 𝑦〉 ∣ ((𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦 ∧ 𝐵𝑆𝑦))} ≠ ∅)) |
| 10 | | opabn0 5533 |
. . . 4
⊢
({〈𝑥, 𝑦〉 ∣ ((𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦 ∧ 𝐵𝑆𝑦))} ≠ ∅ ↔ ∃𝑥∃𝑦((𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦 ∧ 𝐵𝑆𝑦))) |
| 11 | | exdistrv 1955 |
. . . 4
⊢
(∃𝑥∃𝑦((𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦 ∧ 𝐵𝑆𝑦)) ↔ (∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ∧ ∃𝑦(𝐴𝑆𝑦 ∧ 𝐵𝑆𝑦))) |
| 12 | 10, 11 | bitri 275 |
. . 3
⊢
({〈𝑥, 𝑦〉 ∣ ((𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ∧ (𝐴𝑆𝑦 ∧ 𝐵𝑆𝑦))} ≠ ∅ ↔ (∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ∧ ∃𝑦(𝐴𝑆𝑦 ∧ 𝐵𝑆𝑦))) |
| 13 | 9, 12 | bitrdi 287 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ 𝑆) ∩ [𝐵](𝑅 ⋉ 𝑆)) ≠ ∅ ↔ (∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ∧ ∃𝑦(𝐴𝑆𝑦 ∧ 𝐵𝑆𝑦)))) |
| 14 | | brcosscnv2 38496 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡(𝑅 ⋉ 𝑆)𝐵 ↔ ([𝐴](𝑅 ⋉ 𝑆) ∩ [𝐵](𝑅 ⋉ 𝑆)) ≠ ∅)) |
| 15 | | brcosscnv 38495 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
| 16 | | brcosscnv 38495 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑆𝐵 ↔ ∃𝑦(𝐴𝑆𝑦 ∧ 𝐵𝑆𝑦))) |
| 17 | 15, 16 | anbi12d 632 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ≀ ◡𝑅𝐵 ∧ 𝐴 ≀ ◡𝑆𝐵) ↔ (∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ∧ ∃𝑦(𝐴𝑆𝑦 ∧ 𝐵𝑆𝑦)))) |
| 18 | 13, 14, 17 | 3bitr4d 311 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡(𝑅 ⋉ 𝑆)𝐵 ↔ (𝐴 ≀ ◡𝑅𝐵 ∧ 𝐴 ≀ ◡𝑆𝐵))) |