Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cossssid5 | Structured version Visualization version GIF version |
Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
cossssid5 | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥 ∈ ran 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]◡𝑅 ∩ [𝑦]◡𝑅) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossssid4 36684 | . 2 ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥) | |
2 | ineccnvmo2 36573 | . 2 ⊢ (∀𝑥 ∈ ran 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]◡𝑅 ∩ [𝑦]◡𝑅) = ∅) ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥) | |
3 | 1, 2 | bitr4i 278 | 1 ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥 ∈ ran 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]◡𝑅 ∩ [𝑦]◡𝑅) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 845 ∀wal 1537 = wceq 1539 ∃*wmo 2536 ∀wral 3062 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 class class class wbr 5081 I cid 5499 ◡ccnv 5599 ran crn 5601 [cec 8527 ≀ ccoss 36381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rmo 3304 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ec 8531 df-coss 36625 |
This theorem is referenced by: cosselcnvrefrels5 36755 dffunALTV5 36905 |
Copyright terms: Public domain | W3C validator |