Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossssid5 Structured version   Visualization version   GIF version

Theorem cossssid5 36685
Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
cossssid5 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥 ∈ ran 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem cossssid5
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 cossssid4 36684 . 2 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥)
2 ineccnvmo2 36573 . 2 (∀𝑥 ∈ ran 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥)
31, 2bitr4i 278 1 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥 ∈ ran 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 845  wal 1537   = wceq 1539  ∃*wmo 2536  wral 3062  cin 3891  wss 3892  c0 4262   class class class wbr 5081   I cid 5499  ccnv 5599  ran crn 5601  [cec 8527  ccoss 36381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rmo 3304  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531  df-coss 36625
This theorem is referenced by:  cosselcnvrefrels5  36755  dffunALTV5  36905
  Copyright terms: Public domain W3C validator