![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bropabg | Structured version Visualization version GIF version |
Description: Equivalence for two classes related by an ordered-pair class abstraction. A generalization of brsslt 27669. (Contributed by RP, 26-Sep-2024.) |
Ref | Expression |
---|---|
bropabg.xA | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
bropabg.yB | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
bropabg.R | ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Ref | Expression |
---|---|
bropabg | ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bropabg.R | . . 3 ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
2 | 1 | bropaex12 5760 | . 2 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | bropabg.xA | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | bropabg.yB | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
5 | 3, 4, 1 | brabg 5532 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵 ↔ 𝜒)) |
6 | 2, 5 | biadanii 819 | 1 ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 class class class wbr 5141 {copab 5203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 |
This theorem is referenced by: cantnfresb 42631 rp-brsslt 42731 |
Copyright terms: Public domain | W3C validator |