Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bropabg Structured version   Visualization version   GIF version

Theorem bropabg 42063
Description: Equivalence for two classes related by an ordered-pair class abstraction. A generalization of brsslt 27284. (Contributed by RP, 26-Sep-2024.)
Hypotheses
Ref Expression
bropabg.xA (𝑥 = 𝐴 → (𝜑𝜓))
bropabg.yB (𝑦 = 𝐵 → (𝜓𝜒))
bropabg.R 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
bropabg (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem bropabg
StepHypRef Expression
1 bropabg.R . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
21bropaex12 5767 . 2 (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 bropabg.xA . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
4 bropabg.yB . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
53, 4, 1brabg 5539 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵𝜒))
62, 5biadanii 820 1 (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3474   class class class wbr 5148  {copab 5210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682
This theorem is referenced by:  cantnfresb  42064  rp-brsslt  42164
  Copyright terms: Public domain W3C validator