![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bropabg | Structured version Visualization version GIF version |
Description: Equivalence for two classes related by an ordered-pair class abstraction. A generalization of brsslt 27848. (Contributed by RP, 26-Sep-2024.) |
Ref | Expression |
---|---|
bropabg.xA | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
bropabg.yB | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
bropabg.R | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
bropabg | ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bropabg.R | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | 1 | bropaex12 5791 | . 2 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | bropabg.xA | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | bropabg.yB | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
5 | 3, 4, 1 | brabg 5558 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵 ↔ 𝜒)) |
6 | 2, 5 | biadanii 821 | 1 ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 |
This theorem is referenced by: cantnfresb 43286 rp-brsslt 43385 |
Copyright terms: Public domain | W3C validator |