MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsslt Structured version   Visualization version   GIF version

Theorem brsslt 27725
Description: Binary relation form of the surreal set less-than relation. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
brsslt (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem brsslt
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sslt 27721 . . 3 <<s = {⟨𝑎, 𝑏⟩ ∣ (𝑎 No 𝑏 No ∧ ∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦)}
21bropaex12 5705 . 2 (𝐴 <<s 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 sseq1 3955 . . . 4 (𝑎 = 𝐴 → (𝑎 No 𝐴 No ))
4 raleq 3289 . . . 4 (𝑎 = 𝐴 → (∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦 ↔ ∀𝑥𝐴𝑦𝑏 𝑥 <s 𝑦))
53, 43anbi13d 1440 . . 3 (𝑎 = 𝐴 → ((𝑎 No 𝑏 No ∧ ∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦) ↔ (𝐴 No 𝑏 No ∧ ∀𝑥𝐴𝑦𝑏 𝑥 <s 𝑦)))
6 sseq1 3955 . . . 4 (𝑏 = 𝐵 → (𝑏 No 𝐵 No ))
7 raleq 3289 . . . . 5 (𝑏 = 𝐵 → (∀𝑦𝑏 𝑥 <s 𝑦 ↔ ∀𝑦𝐵 𝑥 <s 𝑦))
87ralbidv 3155 . . . 4 (𝑏 = 𝐵 → (∀𝑥𝐴𝑦𝑏 𝑥 <s 𝑦 ↔ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦))
96, 83anbi23d 1441 . . 3 (𝑏 = 𝐵 → ((𝐴 No 𝑏 No ∧ ∀𝑥𝐴𝑦𝑏 𝑥 <s 𝑦) ↔ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
105, 9, 1brabg 5477 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 <<s 𝐵 ↔ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
112, 10biadanii 821 1 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3897   class class class wbr 5089   No csur 27578   <s cslt 27579   <<s csslt 27720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-sslt 27721
This theorem is referenced by:  ssltex1  27726  ssltex2  27727  ssltss1  27728  ssltss2  27729  ssltsep  27730  ssltd  27731  ssltsnb  27732  sssslt1  27736  sssslt2  27737  conway  27740  etasslt  27754  slerec  27760  cofcutr  27868
  Copyright terms: Public domain W3C validator