| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brsslt | Structured version Visualization version GIF version | ||
| Description: Binary relation form of the surreal set less-than relation. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| brsslt | ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sslt 27693 | . . 3 ⊢ <<s = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦)} | |
| 2 | 1 | bropaex12 5730 | . 2 ⊢ (𝐴 <<s 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 3 | sseq1 3972 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑎 ⊆ No ↔ 𝐴 ⊆ No )) | |
| 4 | raleq 3296 | . . . 4 ⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦)) | |
| 5 | 3, 4 | 3anbi13d 1440 | . . 3 ⊢ (𝑎 = 𝐴 → ((𝑎 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦) ↔ (𝐴 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦))) |
| 6 | sseq1 3972 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝑏 ⊆ No ↔ 𝐵 ⊆ No )) | |
| 7 | raleq 3296 | . . . . 5 ⊢ (𝑏 = 𝐵 → (∀𝑦 ∈ 𝑏 𝑥 <s 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) | |
| 8 | 7 | ralbidv 3156 | . . . 4 ⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) |
| 9 | 6, 8 | 3anbi23d 1441 | . . 3 ⊢ (𝑏 = 𝐵 → ((𝐴 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦) ↔ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) |
| 10 | 5, 9, 1 | brabg 5499 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 <<s 𝐵 ↔ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) |
| 11 | 2, 10 | biadanii 821 | 1 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 No csur 27551 <s cslt 27552 <<s csslt 27692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-sslt 27693 |
| This theorem is referenced by: ssltex1 27698 ssltex2 27699 ssltss1 27700 ssltss2 27701 ssltsep 27702 ssltd 27703 sssslt1 27707 sssslt2 27708 conway 27711 etasslt 27725 slerec 27731 cofcutr 27832 |
| Copyright terms: Public domain | W3C validator |