Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsslt Structured version   Visualization version   GIF version

Theorem brsslt 33367
Description: Binary relation form of the surreal set less-than relation. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
brsslt (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem brsslt
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sslt 33364 . . 3 <<s = {⟨𝑎, 𝑏⟩ ∣ (𝑎 No 𝑏 No ∧ ∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦)}
21bropaex12 5606 . 2 (𝐴 <<s 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 sseq1 3940 . . . 4 (𝑎 = 𝐴 → (𝑎 No 𝐴 No ))
4 raleq 3358 . . . 4 (𝑎 = 𝐴 → (∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦 ↔ ∀𝑥𝐴𝑦𝑏 𝑥 <s 𝑦))
53, 43anbi13d 1435 . . 3 (𝑎 = 𝐴 → ((𝑎 No 𝑏 No ∧ ∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦) ↔ (𝐴 No 𝑏 No ∧ ∀𝑥𝐴𝑦𝑏 𝑥 <s 𝑦)))
6 sseq1 3940 . . . 4 (𝑏 = 𝐵 → (𝑏 No 𝐵 No ))
7 raleq 3358 . . . . 5 (𝑏 = 𝐵 → (∀𝑦𝑏 𝑥 <s 𝑦 ↔ ∀𝑦𝐵 𝑥 <s 𝑦))
87ralbidv 3162 . . . 4 (𝑏 = 𝐵 → (∀𝑥𝐴𝑦𝑏 𝑥 <s 𝑦 ↔ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦))
96, 83anbi23d 1436 . . 3 (𝑏 = 𝐵 → ((𝐴 No 𝑏 No ∧ ∀𝑥𝐴𝑦𝑏 𝑥 <s 𝑦) ↔ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
105, 9, 1brabg 5391 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 <<s 𝐵 ↔ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
112, 10biadanii 821 1 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881   class class class wbr 5030   No csur 33260   <s cslt 33261   <<s csslt 33363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-sslt 33364
This theorem is referenced by:  ssltex1  33368  ssltex2  33369  ssltss1  33370  ssltss2  33371  ssltsep  33372  sssslt1  33373  sssslt2  33374  nulsslt  33375  nulssgt  33376  conway  33377  sslttr  33381  ssltun1  33382  ssltun2  33383  etasslt  33387  slerec  33390
  Copyright terms: Public domain W3C validator