MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsslt Structured version   Visualization version   GIF version

Theorem brsslt 27731
Description: Binary relation form of the surreal set less-than relation. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
brsslt (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem brsslt
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sslt 27727 . . 3 <<s = {⟨𝑎, 𝑏⟩ ∣ (𝑎 No 𝑏 No ∧ ∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦)}
21bropaex12 5769 . 2 (𝐴 <<s 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 sseq1 4005 . . . 4 (𝑎 = 𝐴 → (𝑎 No 𝐴 No ))
4 raleq 3319 . . . 4 (𝑎 = 𝐴 → (∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦 ↔ ∀𝑥𝐴𝑦𝑏 𝑥 <s 𝑦))
53, 43anbi13d 1435 . . 3 (𝑎 = 𝐴 → ((𝑎 No 𝑏 No ∧ ∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦) ↔ (𝐴 No 𝑏 No ∧ ∀𝑥𝐴𝑦𝑏 𝑥 <s 𝑦)))
6 sseq1 4005 . . . 4 (𝑏 = 𝐵 → (𝑏 No 𝐵 No ))
7 raleq 3319 . . . . 5 (𝑏 = 𝐵 → (∀𝑦𝑏 𝑥 <s 𝑦 ↔ ∀𝑦𝐵 𝑥 <s 𝑦))
87ralbidv 3174 . . . 4 (𝑏 = 𝐵 → (∀𝑥𝐴𝑦𝑏 𝑥 <s 𝑦 ↔ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦))
96, 83anbi23d 1436 . . 3 (𝑏 = 𝐵 → ((𝐴 No 𝑏 No ∧ ∀𝑥𝐴𝑦𝑏 𝑥 <s 𝑦) ↔ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
105, 9, 1brabg 5541 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 <<s 𝐵 ↔ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
112, 10biadanii 821 1 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3058  Vcvv 3471  wss 3947   class class class wbr 5148   No csur 27586   <s cslt 27587   <<s csslt 27726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-xp 5684  df-sslt 27727
This theorem is referenced by:  ssltex1  27732  ssltex2  27733  ssltss1  27734  ssltss2  27735  ssltsep  27736  ssltd  27737  sssslt1  27741  sssslt2  27742  conway  27745  etasslt  27759  slerec  27765  cofcutr  27857
  Copyright terms: Public domain W3C validator