![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brsslt | Structured version Visualization version GIF version |
Description: Binary relation form of the surreal set less-than relation. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
brsslt | ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sslt 27841 | . . 3 ⊢ <<s = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦)} | |
2 | 1 | bropaex12 5780 | . 2 ⊢ (𝐴 <<s 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | sseq1 4021 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑎 ⊆ No ↔ 𝐴 ⊆ No )) | |
4 | raleq 3321 | . . . 4 ⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦)) | |
5 | 3, 4 | 3anbi13d 1437 | . . 3 ⊢ (𝑎 = 𝐴 → ((𝑎 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦) ↔ (𝐴 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦))) |
6 | sseq1 4021 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝑏 ⊆ No ↔ 𝐵 ⊆ No )) | |
7 | raleq 3321 | . . . . 5 ⊢ (𝑏 = 𝐵 → (∀𝑦 ∈ 𝑏 𝑥 <s 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) | |
8 | 7 | ralbidv 3176 | . . . 4 ⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) |
9 | 6, 8 | 3anbi23d 1438 | . . 3 ⊢ (𝑏 = 𝐵 → ((𝐴 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦) ↔ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) |
10 | 5, 9, 1 | brabg 5549 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 <<s 𝐵 ↔ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) |
11 | 2, 10 | biadanii 822 | 1 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ⊆ wss 3963 class class class wbr 5148 No csur 27699 <s cslt 27700 <<s csslt 27840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-sslt 27841 |
This theorem is referenced by: ssltex1 27846 ssltex2 27847 ssltss1 27848 ssltss2 27849 ssltsep 27850 ssltd 27851 sssslt1 27855 sssslt2 27856 conway 27859 etasslt 27873 slerec 27879 cofcutr 27973 |
Copyright terms: Public domain | W3C validator |