Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsslt Structured version   Visualization version   GIF version

Theorem brsslt 33666
Description: Binary relation form of the surreal set less-than relation. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
brsslt (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem brsslt
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sslt 33662 . . 3 <<s = {⟨𝑎, 𝑏⟩ ∣ (𝑎 No 𝑏 No ∧ ∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦)}
21bropaex12 5624 . 2 (𝐴 <<s 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 sseq1 3912 . . . 4 (𝑎 = 𝐴 → (𝑎 No 𝐴 No ))
4 raleq 3309 . . . 4 (𝑎 = 𝐴 → (∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦 ↔ ∀𝑥𝐴𝑦𝑏 𝑥 <s 𝑦))
53, 43anbi13d 1440 . . 3 (𝑎 = 𝐴 → ((𝑎 No 𝑏 No ∧ ∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦) ↔ (𝐴 No 𝑏 No ∧ ∀𝑥𝐴𝑦𝑏 𝑥 <s 𝑦)))
6 sseq1 3912 . . . 4 (𝑏 = 𝐵 → (𝑏 No 𝐵 No ))
7 raleq 3309 . . . . 5 (𝑏 = 𝐵 → (∀𝑦𝑏 𝑥 <s 𝑦 ↔ ∀𝑦𝐵 𝑥 <s 𝑦))
87ralbidv 3108 . . . 4 (𝑏 = 𝐵 → (∀𝑥𝐴𝑦𝑏 𝑥 <s 𝑦 ↔ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦))
96, 83anbi23d 1441 . . 3 (𝑏 = 𝐵 → ((𝐴 No 𝑏 No ∧ ∀𝑥𝐴𝑦𝑏 𝑥 <s 𝑦) ↔ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
105, 9, 1brabg 5405 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 <<s 𝐵 ↔ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
112, 10biadanii 822 1 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  Vcvv 3398  wss 3853   class class class wbr 5039   No csur 33529   <s cslt 33530   <<s csslt 33661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-br 5040  df-opab 5102  df-xp 5542  df-sslt 33662
This theorem is referenced by:  ssltex1  33667  ssltex2  33668  ssltss1  33669  ssltss2  33670  ssltsep  33671  ssltd  33672  sssslt1  33675  sssslt2  33676  conway  33679  etasslt  33693  slerec  33699  cofcutr  33778
  Copyright terms: Public domain W3C validator