![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brsslt | Structured version Visualization version GIF version |
Description: Binary relation form of the surreal set less-than relation. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
brsslt | ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sslt 27665 | . . 3 ⊢ <<s = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦)} | |
2 | 1 | bropaex12 5760 | . 2 ⊢ (𝐴 <<s 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | sseq1 4002 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑎 ⊆ No ↔ 𝐴 ⊆ No )) | |
4 | raleq 3316 | . . . 4 ⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦)) | |
5 | 3, 4 | 3anbi13d 1434 | . . 3 ⊢ (𝑎 = 𝐴 → ((𝑎 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦) ↔ (𝐴 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦))) |
6 | sseq1 4002 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝑏 ⊆ No ↔ 𝐵 ⊆ No )) | |
7 | raleq 3316 | . . . . 5 ⊢ (𝑏 = 𝐵 → (∀𝑦 ∈ 𝑏 𝑥 <s 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) | |
8 | 7 | ralbidv 3171 | . . . 4 ⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) |
9 | 6, 8 | 3anbi23d 1435 | . . 3 ⊢ (𝑏 = 𝐵 → ((𝐴 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦) ↔ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) |
10 | 5, 9, 1 | brabg 5532 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 <<s 𝐵 ↔ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) |
11 | 2, 10 | biadanii 819 | 1 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3055 Vcvv 3468 ⊆ wss 3943 class class class wbr 5141 No csur 27524 <s cslt 27525 <<s csslt 27664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-sslt 27665 |
This theorem is referenced by: ssltex1 27670 ssltex2 27671 ssltss1 27672 ssltss2 27673 ssltsep 27674 ssltd 27675 sssslt1 27679 sssslt2 27680 conway 27683 etasslt 27697 slerec 27703 cofcutr 27795 |
Copyright terms: Public domain | W3C validator |