| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-brsslt | Structured version Visualization version GIF version | ||
| Description: Binary relation form of a relation, <, which has been extended from relation 𝑅 to subsets of class 𝑆. Usually, we will assume 𝑅 Or 𝑆. Definition in [Alling], p. 2. Generalization of brsslt 27725. (Originally by Scott Fenton, 8-Dec-2021.) (Contributed by RP, 28-Nov-2023.) |
| Ref | Expression |
|---|---|
| nla0001.defsslt | ⊢ < = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} |
| Ref | Expression |
|---|---|
| rp-brsslt | ⊢ (𝐴 < 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥𝑅𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3955 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑎 ⊆ 𝑆 ↔ 𝐴 ⊆ 𝑆)) | |
| 2 | raleq 3289 | . . 3 ⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)) | |
| 3 | 1, 2 | 3anbi13d 1440 | . 2 ⊢ (𝑎 = 𝐴 → ((𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦) ↔ (𝐴 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦))) |
| 4 | sseq1 3955 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑏 ⊆ 𝑆 ↔ 𝐵 ⊆ 𝑆)) | |
| 5 | raleq 3289 | . . . 4 ⊢ (𝑏 = 𝐵 → (∀𝑦 ∈ 𝑏 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥𝑅𝑦)) | |
| 6 | 5 | ralbidv 3155 | . . 3 ⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥𝑅𝑦)) |
| 7 | 4, 6 | 3anbi23d 1441 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐴 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦) ↔ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥𝑅𝑦))) |
| 8 | nla0001.defsslt | . 2 ⊢ < = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} | |
| 9 | 3, 7, 8 | bropabg 43426 | 1 ⊢ (𝐴 < 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥𝑅𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 {copab 5151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 |
| This theorem is referenced by: nla0002 43527 nla0003 43528 |
| Copyright terms: Public domain | W3C validator |