![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-brsslt | Structured version Visualization version GIF version |
Description: Binary relation form of a relation, <, which has been extended from relation 𝑅 to subsets of class 𝑆. Usually, we will assume 𝑅 Or 𝑆. Definition in [Alling], p. 2. Generalization of brsslt 27845. (Originally by Scott Fenton, 8-Dec-2021.) (Contributed by RP, 28-Nov-2023.) |
Ref | Expression |
---|---|
nla0001.defsslt | ⊢ < = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} |
Ref | Expression |
---|---|
rp-brsslt | ⊢ (𝐴 < 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥𝑅𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 4021 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑎 ⊆ 𝑆 ↔ 𝐴 ⊆ 𝑆)) | |
2 | raleq 3321 | . . 3 ⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)) | |
3 | 1, 2 | 3anbi13d 1437 | . 2 ⊢ (𝑎 = 𝐴 → ((𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦) ↔ (𝐴 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦))) |
4 | sseq1 4021 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑏 ⊆ 𝑆 ↔ 𝐵 ⊆ 𝑆)) | |
5 | raleq 3321 | . . . 4 ⊢ (𝑏 = 𝐵 → (∀𝑦 ∈ 𝑏 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥𝑅𝑦)) | |
6 | 5 | ralbidv 3176 | . . 3 ⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥𝑅𝑦)) |
7 | 4, 6 | 3anbi23d 1438 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐴 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦) ↔ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥𝑅𝑦))) |
8 | nla0001.defsslt | . 2 ⊢ < = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} | |
9 | 3, 7, 8 | bropabg 43313 | 1 ⊢ (𝐴 < 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥𝑅𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ⊆ wss 3963 class class class wbr 5148 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 |
This theorem is referenced by: nla0002 43414 nla0003 43415 |
Copyright terms: Public domain | W3C validator |