Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-brsslt Structured version   Visualization version   GIF version

Theorem rp-brsslt 43436
Description: Binary relation form of a relation, <, which has been extended from relation 𝑅 to subsets of class 𝑆. Usually, we will assume 𝑅 Or 𝑆. Definition in [Alling], p. 2. Generalization of brsslt 27830. (Originally by Scott Fenton, 8-Dec-2021.) (Contributed by RP, 28-Nov-2023.)
Hypothesis
Ref Expression
nla0001.defsslt < = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑆𝑏𝑆 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑅𝑦)}
Assertion
Ref Expression
rp-brsslt (𝐴 < 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴𝑆𝐵𝑆 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑅𝑦)))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦   𝐵,𝑎,𝑏,𝑥,𝑦   𝑅,𝑎,𝑏   𝑆,𝑎,𝑏
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   < (𝑥,𝑦,𝑎,𝑏)

Proof of Theorem rp-brsslt
StepHypRef Expression
1 sseq1 4009 . . 3 (𝑎 = 𝐴 → (𝑎𝑆𝐴𝑆))
2 raleq 3323 . . 3 (𝑎 = 𝐴 → (∀𝑥𝑎𝑦𝑏 𝑥𝑅𝑦 ↔ ∀𝑥𝐴𝑦𝑏 𝑥𝑅𝑦))
31, 23anbi13d 1440 . 2 (𝑎 = 𝐴 → ((𝑎𝑆𝑏𝑆 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑅𝑦) ↔ (𝐴𝑆𝑏𝑆 ∧ ∀𝑥𝐴𝑦𝑏 𝑥𝑅𝑦)))
4 sseq1 4009 . . 3 (𝑏 = 𝐵 → (𝑏𝑆𝐵𝑆))
5 raleq 3323 . . . 4 (𝑏 = 𝐵 → (∀𝑦𝑏 𝑥𝑅𝑦 ↔ ∀𝑦𝐵 𝑥𝑅𝑦))
65ralbidv 3178 . . 3 (𝑏 = 𝐵 → (∀𝑥𝐴𝑦𝑏 𝑥𝑅𝑦 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑅𝑦))
74, 63anbi23d 1441 . 2 (𝑏 = 𝐵 → ((𝐴𝑆𝑏𝑆 ∧ ∀𝑥𝐴𝑦𝑏 𝑥𝑅𝑦) ↔ (𝐴𝑆𝐵𝑆 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑅𝑦)))
8 nla0001.defsslt . 2 < = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑆𝑏𝑆 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑅𝑦)}
93, 7, 8bropabg 43336 1 (𝐴 < 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴𝑆𝐵𝑆 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑅𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  wss 3951   class class class wbr 5143  {copab 5205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691
This theorem is referenced by:  nla0002  43437  nla0003  43438
  Copyright terms: Public domain W3C validator