![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caovcom | Structured version Visualization version GIF version |
Description: Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 1-Jun-2013.) |
Ref | Expression |
---|---|
caovcom.1 | ⊢ 𝐴 ∈ V |
caovcom.2 | ⊢ 𝐵 ∈ V |
caovcom.3 | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
Ref | Expression |
---|---|
caovcom | ⊢ (𝐴𝐹𝐵) = (𝐵𝐹𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovcom.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | caovcom.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
4 | caovcom.3 | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ V ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
6 | 5 | caovcomg 7645 | . 2 ⊢ ((𝐴 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
7 | 1, 3, 6 | mp2an 691 | 1 ⊢ (𝐴𝐹𝐵) = (𝐵𝐹𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: caovord2 7662 caov32 7677 caov12 7678 caov42 7683 caovdir 7684 caovmo 7687 ecopovsym 8877 ecopover 8879 genpcl 11077 |
Copyright terms: Public domain | W3C validator |