![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caovcom | Structured version Visualization version GIF version |
Description: Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 1-Jun-2013.) |
Ref | Expression |
---|---|
caovcom.1 | ⊢ 𝐴 ∈ V |
caovcom.2 | ⊢ 𝐵 ∈ V |
caovcom.3 | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
Ref | Expression |
---|---|
caovcom | ⊢ (𝐴𝐹𝐵) = (𝐵𝐹𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovcom.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | caovcom.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | pm3.2i 471 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
4 | caovcom.3 | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ V ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
6 | 5 | caovcomg 7601 | . 2 ⊢ ((𝐴 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
7 | 1, 3, 6 | mp2an 690 | 1 ⊢ (𝐴𝐹𝐵) = (𝐵𝐹𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 (class class class)co 7408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 |
This theorem is referenced by: caovord2 7618 caov32 7633 caov12 7634 caov42 7639 caovdir 7640 caovmo 7643 ecopovsym 8812 ecopover 8814 genpcl 11002 |
Copyright terms: Public domain | W3C validator |