MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovcom Structured version   Visualization version   GIF version

Theorem caovcom 7405
Description: Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 1-Jun-2013.)
Hypotheses
Ref Expression
caovcom.1 𝐴 ∈ V
caovcom.2 𝐵 ∈ V
caovcom.3 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
Assertion
Ref Expression
caovcom (𝐴𝐹𝐵) = (𝐵𝐹𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem caovcom
StepHypRef Expression
1 caovcom.1 . 2 𝐴 ∈ V
2 caovcom.2 . . 3 𝐵 ∈ V
31, 2pm3.2i 474 . 2 (𝐴 ∈ V ∧ 𝐵 ∈ V)
4 caovcom.3 . . . 4 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
54a1i 11 . . 3 ((𝐴 ∈ V ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
65caovcomg 7403 . 2 ((𝐴 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
71, 3, 6mp2an 692 1 (𝐴𝐹𝐵) = (𝐵𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  (class class class)co 7213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-iota 6338  df-fv 6388  df-ov 7216
This theorem is referenced by:  caovord2  7420  caov32  7435  caov12  7436  caov42  7441  caovdir  7442  caovmo  7445  ecopovsym  8501  ecopover  8503  genpcl  10622
  Copyright terms: Public domain W3C validator