| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caovcom | Structured version Visualization version GIF version | ||
| Description: Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 1-Jun-2013.) |
| Ref | Expression |
|---|---|
| caovcom.1 | ⊢ 𝐴 ∈ V |
| caovcom.2 | ⊢ 𝐵 ∈ V |
| caovcom.3 | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
| Ref | Expression |
|---|---|
| caovcom | ⊢ (𝐴𝐹𝐵) = (𝐵𝐹𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovcom.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | caovcom.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
| 4 | caovcom.3 | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
| 5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ V ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
| 6 | 5 | caovcomg 7584 | . 2 ⊢ ((𝐴 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
| 7 | 1, 3, 6 | mp2an 692 | 1 ⊢ (𝐴𝐹𝐵) = (𝐵𝐹𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: caovord2 7601 caov32 7616 caov12 7617 caov42 7622 caovdir 7623 caovmo 7626 ecopovsym 8792 ecopover 8794 genpcl 10961 |
| Copyright terms: Public domain | W3C validator |