MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addassnq Structured version   Visualization version   GIF version

Theorem addassnq 10723
Description: Addition of positive fractions is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addassnq ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶))

Proof of Theorem addassnq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addasspi 10660 . . . . . . . 8 ((((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N (((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶))) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))) = (((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N ((((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))))
2 ovex 7317 . . . . . . . . . . 11 ((1st𝐴) ·N (2nd𝐵)) ∈ V
3 ovex 7317 . . . . . . . . . . 11 ((1st𝐵) ·N (2nd𝐴)) ∈ V
4 fvex 6796 . . . . . . . . . . 11 (2nd𝐶) ∈ V
5 mulcompi 10661 . . . . . . . . . . 11 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
6 distrpi 10663 . . . . . . . . . . 11 (𝑥 ·N (𝑦 +N 𝑧)) = ((𝑥 ·N 𝑦) +N (𝑥 ·N 𝑧))
72, 3, 4, 5, 6caovdir 7515 . . . . . . . . . 10 ((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) = ((((1st𝐴) ·N (2nd𝐵)) ·N (2nd𝐶)) +N (((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶)))
8 mulasspi 10662 . . . . . . . . . . 11 (((1st𝐴) ·N (2nd𝐵)) ·N (2nd𝐶)) = ((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))
98oveq1i 7294 . . . . . . . . . 10 ((((1st𝐴) ·N (2nd𝐵)) ·N (2nd𝐶)) +N (((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶))) = (((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N (((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶)))
107, 9eqtri 2767 . . . . . . . . 9 ((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) = (((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N (((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶)))
1110oveq1i 7294 . . . . . . . 8 (((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))) = ((((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N (((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶))) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵))))
12 ovex 7317 . . . . . . . . . . 11 ((1st𝐵) ·N (2nd𝐶)) ∈ V
13 ovex 7317 . . . . . . . . . . 11 ((1st𝐶) ·N (2nd𝐵)) ∈ V
14 fvex 6796 . . . . . . . . . . 11 (2nd𝐴) ∈ V
1512, 13, 14, 5, 6caovdir 7515 . . . . . . . . . 10 ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ·N (2nd𝐴)) = ((((1st𝐵) ·N (2nd𝐶)) ·N (2nd𝐴)) +N (((1st𝐶) ·N (2nd𝐵)) ·N (2nd𝐴)))
16 fvex 6796 . . . . . . . . . . . 12 (1st𝐵) ∈ V
17 mulasspi 10662 . . . . . . . . . . . 12 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
1816, 4, 14, 5, 17caov32 7508 . . . . . . . . . . 11 (((1st𝐵) ·N (2nd𝐶)) ·N (2nd𝐴)) = (((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶))
19 mulasspi 10662 . . . . . . . . . . . 12 (((1st𝐶) ·N (2nd𝐵)) ·N (2nd𝐴)) = ((1st𝐶) ·N ((2nd𝐵) ·N (2nd𝐴)))
20 mulcompi 10661 . . . . . . . . . . . . 13 ((2nd𝐵) ·N (2nd𝐴)) = ((2nd𝐴) ·N (2nd𝐵))
2120oveq2i 7295 . . . . . . . . . . . 12 ((1st𝐶) ·N ((2nd𝐵) ·N (2nd𝐴))) = ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))
2219, 21eqtri 2767 . . . . . . . . . . 11 (((1st𝐶) ·N (2nd𝐵)) ·N (2nd𝐴)) = ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))
2318, 22oveq12i 7296 . . . . . . . . . 10 ((((1st𝐵) ·N (2nd𝐶)) ·N (2nd𝐴)) +N (((1st𝐶) ·N (2nd𝐵)) ·N (2nd𝐴))) = ((((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵))))
2415, 23eqtri 2767 . . . . . . . . 9 ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ·N (2nd𝐴)) = ((((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵))))
2524oveq2i 7295 . . . . . . . 8 (((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ·N (2nd𝐴))) = (((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N ((((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))))
261, 11, 253eqtr4i 2777 . . . . . . 7 (((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))) = (((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ·N (2nd𝐴)))
27 mulasspi 10662 . . . . . . 7 (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶)) = ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))
2826, 27opeq12i 4810 . . . . . 6 ⟨(((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩ = ⟨(((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩
29 elpqn 10690 . . . . . . . . . 10 (𝐴Q𝐴 ∈ (N × N))
30293ad2ant1 1132 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐴 ∈ (N × N))
31 elpqn 10690 . . . . . . . . . 10 (𝐵Q𝐵 ∈ (N × N))
32313ad2ant2 1133 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐵 ∈ (N × N))
33 addpipq2 10701 . . . . . . . . 9 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = ⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩)
3430, 32, 33syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐴 +pQ 𝐵) = ⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩)
35 relxp 5608 . . . . . . . . 9 Rel (N × N)
36 elpqn 10690 . . . . . . . . . 10 (𝐶Q𝐶 ∈ (N × N))
37363ad2ant3 1134 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐶 ∈ (N × N))
38 1st2nd 7889 . . . . . . . . 9 ((Rel (N × N) ∧ 𝐶 ∈ (N × N)) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
3935, 37, 38sylancr 587 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
4034, 39oveq12d 7302 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +pQ 𝐵) +pQ 𝐶) = (⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩ +pQ ⟨(1st𝐶), (2nd𝐶)⟩))
41 xp1st 7872 . . . . . . . . . . 11 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
4230, 41syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (1st𝐴) ∈ N)
43 xp2nd 7873 . . . . . . . . . . 11 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
4432, 43syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐵) ∈ N)
45 mulclpi 10658 . . . . . . . . . 10 (((1st𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
4642, 44, 45syl2anc 584 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
47 xp1st 7872 . . . . . . . . . . 11 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
4832, 47syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (1st𝐵) ∈ N)
49 xp2nd 7873 . . . . . . . . . . 11 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
5030, 49syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐴) ∈ N)
51 mulclpi 10658 . . . . . . . . . 10 (((1st𝐵) ∈ N ∧ (2nd𝐴) ∈ N) → ((1st𝐵) ·N (2nd𝐴)) ∈ N)
5248, 50, 51syl2anc 584 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐵) ·N (2nd𝐴)) ∈ N)
53 addclpi 10657 . . . . . . . . 9 ((((1st𝐴) ·N (2nd𝐵)) ∈ N ∧ ((1st𝐵) ·N (2nd𝐴)) ∈ N) → (((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ∈ N)
5446, 52, 53syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ∈ N)
55 mulclpi 10658 . . . . . . . . 9 (((2nd𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
5650, 44, 55syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
57 xp1st 7872 . . . . . . . . 9 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
5837, 57syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (1st𝐶) ∈ N)
59 xp2nd 7873 . . . . . . . . 9 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
6037, 59syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐶) ∈ N)
61 addpipq 10702 . . . . . . . 8 ((((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐵)) ∈ N) ∧ ((1st𝐶) ∈ N ∧ (2nd𝐶) ∈ N)) → (⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩ +pQ ⟨(1st𝐶), (2nd𝐶)⟩) = ⟨(((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
6254, 56, 58, 60, 61syl22anc 836 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩ +pQ ⟨(1st𝐶), (2nd𝐶)⟩) = ⟨(((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
6340, 62eqtrd 2779 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +pQ 𝐵) +pQ 𝐶) = ⟨(((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
64 1st2nd 7889 . . . . . . . . 9 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
6535, 30, 64sylancr 587 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
66 addpipq2 10701 . . . . . . . . 9 ((𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 +pQ 𝐶) = ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩)
6732, 37, 66syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐵 +pQ 𝐶) = ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩)
6865, 67oveq12d 7302 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (𝐴 +pQ (𝐵 +pQ 𝐶)) = (⟨(1st𝐴), (2nd𝐴)⟩ +pQ ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩))
69 mulclpi 10658 . . . . . . . . . 10 (((1st𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((1st𝐵) ·N (2nd𝐶)) ∈ N)
7048, 60, 69syl2anc 584 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐵) ·N (2nd𝐶)) ∈ N)
71 mulclpi 10658 . . . . . . . . . 10 (((1st𝐶) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐶) ·N (2nd𝐵)) ∈ N)
7258, 44, 71syl2anc 584 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐶) ·N (2nd𝐵)) ∈ N)
73 addclpi 10657 . . . . . . . . 9 ((((1st𝐵) ·N (2nd𝐶)) ∈ N ∧ ((1st𝐶) ·N (2nd𝐵)) ∈ N) → (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ∈ N)
7470, 72, 73syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ∈ N)
75 mulclpi 10658 . . . . . . . . 9 (((2nd𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
7644, 60, 75syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
77 addpipq 10702 . . . . . . . 8 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ∈ N ∧ ((2nd𝐵) ·N (2nd𝐶)) ∈ N)) → (⟨(1st𝐴), (2nd𝐴)⟩ +pQ ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩) = ⟨(((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
7842, 50, 74, 76, 77syl22anc 836 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (⟨(1st𝐴), (2nd𝐴)⟩ +pQ ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩) = ⟨(((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
7968, 78eqtrd 2779 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (𝐴 +pQ (𝐵 +pQ 𝐶)) = ⟨(((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
8028, 63, 793eqtr4a 2805 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +pQ 𝐵) +pQ 𝐶) = (𝐴 +pQ (𝐵 +pQ 𝐶)))
8180fveq2d 6787 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ([Q]‘((𝐴 +pQ 𝐵) +pQ 𝐶)) = ([Q]‘(𝐴 +pQ (𝐵 +pQ 𝐶))))
82 adderpq 10721 . . . 4 (([Q]‘(𝐴 +pQ 𝐵)) +Q ([Q]‘𝐶)) = ([Q]‘((𝐴 +pQ 𝐵) +pQ 𝐶))
83 adderpq 10721 . . . 4 (([Q]‘𝐴) +Q ([Q]‘(𝐵 +pQ 𝐶))) = ([Q]‘(𝐴 +pQ (𝐵 +pQ 𝐶)))
8481, 82, 833eqtr4g 2804 . . 3 ((𝐴Q𝐵Q𝐶Q) → (([Q]‘(𝐴 +pQ 𝐵)) +Q ([Q]‘𝐶)) = (([Q]‘𝐴) +Q ([Q]‘(𝐵 +pQ 𝐶))))
85 addpqnq 10703 . . . . 5 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵)))
86853adant3 1131 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵)))
87 nqerid 10698 . . . . . 6 (𝐶Q → ([Q]‘𝐶) = 𝐶)
8887eqcomd 2745 . . . . 5 (𝐶Q𝐶 = ([Q]‘𝐶))
89883ad2ant3 1134 . . . 4 ((𝐴Q𝐵Q𝐶Q) → 𝐶 = ([Q]‘𝐶))
9086, 89oveq12d 7302 . . 3 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +Q 𝐵) +Q 𝐶) = (([Q]‘(𝐴 +pQ 𝐵)) +Q ([Q]‘𝐶)))
91 nqerid 10698 . . . . . 6 (𝐴Q → ([Q]‘𝐴) = 𝐴)
9291eqcomd 2745 . . . . 5 (𝐴Q𝐴 = ([Q]‘𝐴))
93923ad2ant1 1132 . . . 4 ((𝐴Q𝐵Q𝐶Q) → 𝐴 = ([Q]‘𝐴))
94 addpqnq 10703 . . . . 5 ((𝐵Q𝐶Q) → (𝐵 +Q 𝐶) = ([Q]‘(𝐵 +pQ 𝐶)))
95943adant1 1129 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐵 +Q 𝐶) = ([Q]‘(𝐵 +pQ 𝐶)))
9693, 95oveq12d 7302 . . 3 ((𝐴Q𝐵Q𝐶Q) → (𝐴 +Q (𝐵 +Q 𝐶)) = (([Q]‘𝐴) +Q ([Q]‘(𝐵 +pQ 𝐶))))
9784, 90, 963eqtr4d 2789 . 2 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶)))
98 addnqf 10713 . . . 4 +Q :(Q × Q)⟶Q
9998fdmi 6621 . . 3 dom +Q = (Q × Q)
100 0nnq 10689 . . 3 ¬ ∅ ∈ Q
10199, 100ndmovass 7469 . 2 (¬ (𝐴Q𝐵Q𝐶Q) → ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶)))
10297, 101pm2.61i 182 1 ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶))
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1539  wcel 2107  cop 4568   × cxp 5588  Rel wrel 5595  cfv 6437  (class class class)co 7284  1st c1st 7838  2nd c2nd 7839  Ncnpi 10609   +N cpli 10610   ·N cmi 10611   +pQ cplpq 10613  Qcnq 10617  [Q]cerq 10619   +Q cplq 10620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pr 5353  ax-un 7597
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-oadd 8310  df-omul 8311  df-er 8507  df-ni 10637  df-pli 10638  df-mi 10639  df-lti 10640  df-plpq 10673  df-enq 10676  df-nq 10677  df-erq 10678  df-plq 10679  df-1nq 10681
This theorem is referenced by:  ltaddnq  10739  addasspr  10787  prlem934  10798  ltexprlem7  10807
  Copyright terms: Public domain W3C validator