MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addassnq Structured version   Visualization version   GIF version

Theorem addassnq 10977
Description: Addition of positive fractions is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addassnq ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶))

Proof of Theorem addassnq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addasspi 10914 . . . . . . . 8 ((((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N (((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶))) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))) = (((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N ((((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))))
2 ovex 7443 . . . . . . . . . . 11 ((1st𝐴) ·N (2nd𝐵)) ∈ V
3 ovex 7443 . . . . . . . . . . 11 ((1st𝐵) ·N (2nd𝐴)) ∈ V
4 fvex 6894 . . . . . . . . . . 11 (2nd𝐶) ∈ V
5 mulcompi 10915 . . . . . . . . . . 11 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
6 distrpi 10917 . . . . . . . . . . 11 (𝑥 ·N (𝑦 +N 𝑧)) = ((𝑥 ·N 𝑦) +N (𝑥 ·N 𝑧))
72, 3, 4, 5, 6caovdir 7646 . . . . . . . . . 10 ((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) = ((((1st𝐴) ·N (2nd𝐵)) ·N (2nd𝐶)) +N (((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶)))
8 mulasspi 10916 . . . . . . . . . . 11 (((1st𝐴) ·N (2nd𝐵)) ·N (2nd𝐶)) = ((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))
98oveq1i 7420 . . . . . . . . . 10 ((((1st𝐴) ·N (2nd𝐵)) ·N (2nd𝐶)) +N (((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶))) = (((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N (((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶)))
107, 9eqtri 2759 . . . . . . . . 9 ((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) = (((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N (((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶)))
1110oveq1i 7420 . . . . . . . 8 (((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))) = ((((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N (((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶))) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵))))
12 ovex 7443 . . . . . . . . . . 11 ((1st𝐵) ·N (2nd𝐶)) ∈ V
13 ovex 7443 . . . . . . . . . . 11 ((1st𝐶) ·N (2nd𝐵)) ∈ V
14 fvex 6894 . . . . . . . . . . 11 (2nd𝐴) ∈ V
1512, 13, 14, 5, 6caovdir 7646 . . . . . . . . . 10 ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ·N (2nd𝐴)) = ((((1st𝐵) ·N (2nd𝐶)) ·N (2nd𝐴)) +N (((1st𝐶) ·N (2nd𝐵)) ·N (2nd𝐴)))
16 fvex 6894 . . . . . . . . . . . 12 (1st𝐵) ∈ V
17 mulasspi 10916 . . . . . . . . . . . 12 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
1816, 4, 14, 5, 17caov32 7639 . . . . . . . . . . 11 (((1st𝐵) ·N (2nd𝐶)) ·N (2nd𝐴)) = (((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶))
19 mulasspi 10916 . . . . . . . . . . . 12 (((1st𝐶) ·N (2nd𝐵)) ·N (2nd𝐴)) = ((1st𝐶) ·N ((2nd𝐵) ·N (2nd𝐴)))
20 mulcompi 10915 . . . . . . . . . . . . 13 ((2nd𝐵) ·N (2nd𝐴)) = ((2nd𝐴) ·N (2nd𝐵))
2120oveq2i 7421 . . . . . . . . . . . 12 ((1st𝐶) ·N ((2nd𝐵) ·N (2nd𝐴))) = ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))
2219, 21eqtri 2759 . . . . . . . . . . 11 (((1st𝐶) ·N (2nd𝐵)) ·N (2nd𝐴)) = ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))
2318, 22oveq12i 7422 . . . . . . . . . 10 ((((1st𝐵) ·N (2nd𝐶)) ·N (2nd𝐴)) +N (((1st𝐶) ·N (2nd𝐵)) ·N (2nd𝐴))) = ((((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵))))
2415, 23eqtri 2759 . . . . . . . . 9 ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ·N (2nd𝐴)) = ((((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵))))
2524oveq2i 7421 . . . . . . . 8 (((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ·N (2nd𝐴))) = (((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N ((((1st𝐵) ·N (2nd𝐴)) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))))
261, 11, 253eqtr4i 2769 . . . . . . 7 (((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))) = (((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ·N (2nd𝐴)))
27 mulasspi 10916 . . . . . . 7 (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶)) = ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))
2826, 27opeq12i 4859 . . . . . 6 ⟨(((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩ = ⟨(((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩
29 elpqn 10944 . . . . . . . . . 10 (𝐴Q𝐴 ∈ (N × N))
30293ad2ant1 1133 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐴 ∈ (N × N))
31 elpqn 10944 . . . . . . . . . 10 (𝐵Q𝐵 ∈ (N × N))
32313ad2ant2 1134 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐵 ∈ (N × N))
33 addpipq2 10955 . . . . . . . . 9 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = ⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩)
3430, 32, 33syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐴 +pQ 𝐵) = ⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩)
35 relxp 5677 . . . . . . . . 9 Rel (N × N)
36 elpqn 10944 . . . . . . . . . 10 (𝐶Q𝐶 ∈ (N × N))
37363ad2ant3 1135 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐶 ∈ (N × N))
38 1st2nd 8043 . . . . . . . . 9 ((Rel (N × N) ∧ 𝐶 ∈ (N × N)) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
3935, 37, 38sylancr 587 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
4034, 39oveq12d 7428 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +pQ 𝐵) +pQ 𝐶) = (⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩ +pQ ⟨(1st𝐶), (2nd𝐶)⟩))
41 xp1st 8025 . . . . . . . . . . 11 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
4230, 41syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (1st𝐴) ∈ N)
43 xp2nd 8026 . . . . . . . . . . 11 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
4432, 43syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐵) ∈ N)
45 mulclpi 10912 . . . . . . . . . 10 (((1st𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
4642, 44, 45syl2anc 584 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
47 xp1st 8025 . . . . . . . . . . 11 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
4832, 47syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (1st𝐵) ∈ N)
49 xp2nd 8026 . . . . . . . . . . 11 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
5030, 49syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐴) ∈ N)
51 mulclpi 10912 . . . . . . . . . 10 (((1st𝐵) ∈ N ∧ (2nd𝐴) ∈ N) → ((1st𝐵) ·N (2nd𝐴)) ∈ N)
5248, 50, 51syl2anc 584 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐵) ·N (2nd𝐴)) ∈ N)
53 addclpi 10911 . . . . . . . . 9 ((((1st𝐴) ·N (2nd𝐵)) ∈ N ∧ ((1st𝐵) ·N (2nd𝐴)) ∈ N) → (((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ∈ N)
5446, 52, 53syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ∈ N)
55 mulclpi 10912 . . . . . . . . 9 (((2nd𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
5650, 44, 55syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
57 xp1st 8025 . . . . . . . . 9 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
5837, 57syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (1st𝐶) ∈ N)
59 xp2nd 8026 . . . . . . . . 9 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
6037, 59syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐶) ∈ N)
61 addpipq 10956 . . . . . . . 8 ((((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐵)) ∈ N) ∧ ((1st𝐶) ∈ N ∧ (2nd𝐶) ∈ N)) → (⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩ +pQ ⟨(1st𝐶), (2nd𝐶)⟩) = ⟨(((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
6254, 56, 58, 60, 61syl22anc 838 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩ +pQ ⟨(1st𝐶), (2nd𝐶)⟩) = ⟨(((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
6340, 62eqtrd 2771 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +pQ 𝐵) +pQ 𝐶) = ⟨(((((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) +N ((1st𝐶) ·N ((2nd𝐴) ·N (2nd𝐵)))), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
64 1st2nd 8043 . . . . . . . . 9 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
6535, 30, 64sylancr 587 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
66 addpipq2 10955 . . . . . . . . 9 ((𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 +pQ 𝐶) = ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩)
6732, 37, 66syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐵 +pQ 𝐶) = ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩)
6865, 67oveq12d 7428 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (𝐴 +pQ (𝐵 +pQ 𝐶)) = (⟨(1st𝐴), (2nd𝐴)⟩ +pQ ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩))
69 mulclpi 10912 . . . . . . . . . 10 (((1st𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((1st𝐵) ·N (2nd𝐶)) ∈ N)
7048, 60, 69syl2anc 584 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐵) ·N (2nd𝐶)) ∈ N)
71 mulclpi 10912 . . . . . . . . . 10 (((1st𝐶) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐶) ·N (2nd𝐵)) ∈ N)
7258, 44, 71syl2anc 584 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐶) ·N (2nd𝐵)) ∈ N)
73 addclpi 10911 . . . . . . . . 9 ((((1st𝐵) ·N (2nd𝐶)) ∈ N ∧ ((1st𝐶) ·N (2nd𝐵)) ∈ N) → (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ∈ N)
7470, 72, 73syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ∈ N)
75 mulclpi 10912 . . . . . . . . 9 (((2nd𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
7644, 60, 75syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
77 addpipq 10956 . . . . . . . 8 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ∈ N ∧ ((2nd𝐵) ·N (2nd𝐶)) ∈ N)) → (⟨(1st𝐴), (2nd𝐴)⟩ +pQ ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩) = ⟨(((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
7842, 50, 74, 76, 77syl22anc 838 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (⟨(1st𝐴), (2nd𝐴)⟩ +pQ ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩) = ⟨(((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
7968, 78eqtrd 2771 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (𝐴 +pQ (𝐵 +pQ 𝐶)) = ⟨(((1st𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) +N ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ·N (2nd𝐴))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
8028, 63, 793eqtr4a 2797 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +pQ 𝐵) +pQ 𝐶) = (𝐴 +pQ (𝐵 +pQ 𝐶)))
8180fveq2d 6885 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ([Q]‘((𝐴 +pQ 𝐵) +pQ 𝐶)) = ([Q]‘(𝐴 +pQ (𝐵 +pQ 𝐶))))
82 adderpq 10975 . . . 4 (([Q]‘(𝐴 +pQ 𝐵)) +Q ([Q]‘𝐶)) = ([Q]‘((𝐴 +pQ 𝐵) +pQ 𝐶))
83 adderpq 10975 . . . 4 (([Q]‘𝐴) +Q ([Q]‘(𝐵 +pQ 𝐶))) = ([Q]‘(𝐴 +pQ (𝐵 +pQ 𝐶)))
8481, 82, 833eqtr4g 2796 . . 3 ((𝐴Q𝐵Q𝐶Q) → (([Q]‘(𝐴 +pQ 𝐵)) +Q ([Q]‘𝐶)) = (([Q]‘𝐴) +Q ([Q]‘(𝐵 +pQ 𝐶))))
85 addpqnq 10957 . . . . 5 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵)))
86853adant3 1132 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵)))
87 nqerid 10952 . . . . . 6 (𝐶Q → ([Q]‘𝐶) = 𝐶)
8887eqcomd 2742 . . . . 5 (𝐶Q𝐶 = ([Q]‘𝐶))
89883ad2ant3 1135 . . . 4 ((𝐴Q𝐵Q𝐶Q) → 𝐶 = ([Q]‘𝐶))
9086, 89oveq12d 7428 . . 3 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +Q 𝐵) +Q 𝐶) = (([Q]‘(𝐴 +pQ 𝐵)) +Q ([Q]‘𝐶)))
91 nqerid 10952 . . . . . 6 (𝐴Q → ([Q]‘𝐴) = 𝐴)
9291eqcomd 2742 . . . . 5 (𝐴Q𝐴 = ([Q]‘𝐴))
93923ad2ant1 1133 . . . 4 ((𝐴Q𝐵Q𝐶Q) → 𝐴 = ([Q]‘𝐴))
94 addpqnq 10957 . . . . 5 ((𝐵Q𝐶Q) → (𝐵 +Q 𝐶) = ([Q]‘(𝐵 +pQ 𝐶)))
95943adant1 1130 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐵 +Q 𝐶) = ([Q]‘(𝐵 +pQ 𝐶)))
9693, 95oveq12d 7428 . . 3 ((𝐴Q𝐵Q𝐶Q) → (𝐴 +Q (𝐵 +Q 𝐶)) = (([Q]‘𝐴) +Q ([Q]‘(𝐵 +pQ 𝐶))))
9784, 90, 963eqtr4d 2781 . 2 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶)))
98 addnqf 10967 . . . 4 +Q :(Q × Q)⟶Q
9998fdmi 6722 . . 3 dom +Q = (Q × Q)
100 0nnq 10943 . . 3 ¬ ∅ ∈ Q
10199, 100ndmovass 7600 . 2 (¬ (𝐴Q𝐵Q𝐶Q) → ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶)))
10297, 101pm2.61i 182 1 ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶))
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1540  wcel 2109  cop 4612   × cxp 5657  Rel wrel 5664  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  Ncnpi 10863   +N cpli 10864   ·N cmi 10865   +pQ cplpq 10867  Qcnq 10871  [Q]cerq 10873   +Q cplq 10874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-er 8724  df-ni 10891  df-pli 10892  df-mi 10893  df-lti 10894  df-plpq 10927  df-enq 10930  df-nq 10931  df-erq 10932  df-plq 10933  df-1nq 10935
This theorem is referenced by:  ltaddnq  10993  addasspr  11041  prlem934  11052  ltexprlem7  11061
  Copyright terms: Public domain W3C validator