MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovcang Structured version   Visualization version   GIF version

Theorem caovcang 7473
Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypothesis
Ref Expression
caovcang.1 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
Assertion
Ref Expression
caovcang ((𝜑 ∧ (𝐴𝑇𝐵𝑆𝐶𝑆)) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧

Proof of Theorem caovcang
StepHypRef Expression
1 caovcang.1 . . 3 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
21ralrimivvva 3127 . 2 (𝜑 → ∀𝑥𝑇𝑦𝑆𝑧𝑆 ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
3 oveq1 7282 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
4 oveq1 7282 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐹𝑧) = (𝐴𝐹𝑧))
53, 4eqeq12d 2754 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ (𝐴𝐹𝑦) = (𝐴𝐹𝑧)))
65bibi1d 344 . . 3 (𝑥 = 𝐴 → (((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧) ↔ ((𝐴𝐹𝑦) = (𝐴𝐹𝑧) ↔ 𝑦 = 𝑧)))
7 oveq2 7283 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
87eqeq1d 2740 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = (𝐴𝐹𝑧) ↔ (𝐴𝐹𝐵) = (𝐴𝐹𝑧)))
9 eqeq1 2742 . . . 4 (𝑦 = 𝐵 → (𝑦 = 𝑧𝐵 = 𝑧))
108, 9bibi12d 346 . . 3 (𝑦 = 𝐵 → (((𝐴𝐹𝑦) = (𝐴𝐹𝑧) ↔ 𝑦 = 𝑧) ↔ ((𝐴𝐹𝐵) = (𝐴𝐹𝑧) ↔ 𝐵 = 𝑧)))
11 oveq2 7283 . . . . 5 (𝑧 = 𝐶 → (𝐴𝐹𝑧) = (𝐴𝐹𝐶))
1211eqeq2d 2749 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐹𝐵) = (𝐴𝐹𝑧) ↔ (𝐴𝐹𝐵) = (𝐴𝐹𝐶)))
13 eqeq2 2750 . . . 4 (𝑧 = 𝐶 → (𝐵 = 𝑧𝐵 = 𝐶))
1412, 13bibi12d 346 . . 3 (𝑧 = 𝐶 → (((𝐴𝐹𝐵) = (𝐴𝐹𝑧) ↔ 𝐵 = 𝑧) ↔ ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶)))
156, 10, 14rspc3v 3573 . 2 ((𝐴𝑇𝐵𝑆𝐶𝑆) → (∀𝑥𝑇𝑦𝑆𝑧𝑆 ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶)))
162, 15mpan9 507 1 ((𝜑 ∧ (𝐴𝑇𝐵𝑆𝐶𝑆)) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  caovcand  7474  caofcan  41941
  Copyright terms: Public domain W3C validator