Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caofcan Structured version   Visualization version   GIF version

Theorem caofcan 41830
Description: Transfer a cancellation law like mulcan 11542 to the function operation. (Contributed by Steve Rodriguez, 16-Nov-2015.)
Hypotheses
Ref Expression
caofcan.1 (𝜑𝐴𝑉)
caofcan.2 (𝜑𝐹:𝐴𝑇)
caofcan.3 (𝜑𝐺:𝐴𝑆)
caofcan.4 (𝜑𝐻:𝐴𝑆)
caofcan.5 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦) = (𝑥𝑅𝑧) ↔ 𝑦 = 𝑧))
Assertion
Ref Expression
caofcan (𝜑 → ((𝐹f 𝑅𝐺) = (𝐹f 𝑅𝐻) ↔ 𝐺 = 𝐻))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem caofcan
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofcan.2 . . . . . . 7 (𝜑𝐹:𝐴𝑇)
21ffnd 6585 . . . . . 6 (𝜑𝐹 Fn 𝐴)
3 caofcan.3 . . . . . . 7 (𝜑𝐺:𝐴𝑆)
43ffnd 6585 . . . . . 6 (𝜑𝐺 Fn 𝐴)
5 caofcan.1 . . . . . 6 (𝜑𝐴𝑉)
6 inidm 4149 . . . . . 6 (𝐴𝐴) = 𝐴
7 eqidd 2739 . . . . . 6 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
8 eqidd 2739 . . . . . 6 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝐺𝑤))
92, 4, 5, 5, 6, 7, 8ofval 7522 . . . . 5 ((𝜑𝑤𝐴) → ((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹𝑤)𝑅(𝐺𝑤)))
10 caofcan.4 . . . . . . 7 (𝜑𝐻:𝐴𝑆)
1110ffnd 6585 . . . . . 6 (𝜑𝐻 Fn 𝐴)
12 eqidd 2739 . . . . . 6 ((𝜑𝑤𝐴) → (𝐻𝑤) = (𝐻𝑤))
132, 11, 5, 5, 6, 7, 12ofval 7522 . . . . 5 ((𝜑𝑤𝐴) → ((𝐹f 𝑅𝐻)‘𝑤) = ((𝐹𝑤)𝑅(𝐻𝑤)))
149, 13eqeq12d 2754 . . . 4 ((𝜑𝑤𝐴) → (((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹f 𝑅𝐻)‘𝑤) ↔ ((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐹𝑤)𝑅(𝐻𝑤))))
15 simpl 482 . . . . 5 ((𝜑𝑤𝐴) → 𝜑)
161ffvelrnda 6943 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑇)
173ffvelrnda 6943 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
1810ffvelrnda 6943 . . . . 5 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
19 caofcan.5 . . . . . 6 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦) = (𝑥𝑅𝑧) ↔ 𝑦 = 𝑧))
2019caovcang 7451 . . . . 5 ((𝜑 ∧ ((𝐹𝑤) ∈ 𝑇 ∧ (𝐺𝑤) ∈ 𝑆 ∧ (𝐻𝑤) ∈ 𝑆)) → (((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐹𝑤)𝑅(𝐻𝑤)) ↔ (𝐺𝑤) = (𝐻𝑤)))
2115, 16, 17, 18, 20syl13anc 1370 . . . 4 ((𝜑𝑤𝐴) → (((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐹𝑤)𝑅(𝐻𝑤)) ↔ (𝐺𝑤) = (𝐻𝑤)))
2214, 21bitrd 278 . . 3 ((𝜑𝑤𝐴) → (((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹f 𝑅𝐻)‘𝑤) ↔ (𝐺𝑤) = (𝐻𝑤)))
2322ralbidva 3119 . 2 (𝜑 → (∀𝑤𝐴 ((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹f 𝑅𝐻)‘𝑤) ↔ ∀𝑤𝐴 (𝐺𝑤) = (𝐻𝑤)))
242, 4, 5, 5, 6offn 7524 . . 3 (𝜑 → (𝐹f 𝑅𝐺) Fn 𝐴)
252, 11, 5, 5, 6offn 7524 . . 3 (𝜑 → (𝐹f 𝑅𝐻) Fn 𝐴)
26 eqfnfv 6891 . . 3 (((𝐹f 𝑅𝐺) Fn 𝐴 ∧ (𝐹f 𝑅𝐻) Fn 𝐴) → ((𝐹f 𝑅𝐺) = (𝐹f 𝑅𝐻) ↔ ∀𝑤𝐴 ((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹f 𝑅𝐻)‘𝑤)))
2724, 25, 26syl2anc 583 . 2 (𝜑 → ((𝐹f 𝑅𝐺) = (𝐹f 𝑅𝐻) ↔ ∀𝑤𝐴 ((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹f 𝑅𝐻)‘𝑤)))
28 eqfnfv 6891 . . 3 ((𝐺 Fn 𝐴𝐻 Fn 𝐴) → (𝐺 = 𝐻 ↔ ∀𝑤𝐴 (𝐺𝑤) = (𝐻𝑤)))
294, 11, 28syl2anc 583 . 2 (𝜑 → (𝐺 = 𝐻 ↔ ∀𝑤𝐴 (𝐺𝑤) = (𝐻𝑤)))
3023, 27, 293bitr4d 310 1 (𝜑 → ((𝐹f 𝑅𝐺) = (𝐹f 𝑅𝐻) ↔ 𝐺 = 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator