Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caofcan Structured version   Visualization version   GIF version

Theorem caofcan 41941
Description: Transfer a cancellation law like mulcan 11612 to the function operation. (Contributed by Steve Rodriguez, 16-Nov-2015.)
Hypotheses
Ref Expression
caofcan.1 (𝜑𝐴𝑉)
caofcan.2 (𝜑𝐹:𝐴𝑇)
caofcan.3 (𝜑𝐺:𝐴𝑆)
caofcan.4 (𝜑𝐻:𝐴𝑆)
caofcan.5 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦) = (𝑥𝑅𝑧) ↔ 𝑦 = 𝑧))
Assertion
Ref Expression
caofcan (𝜑 → ((𝐹f 𝑅𝐺) = (𝐹f 𝑅𝐻) ↔ 𝐺 = 𝐻))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem caofcan
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofcan.2 . . . . . . 7 (𝜑𝐹:𝐴𝑇)
21ffnd 6601 . . . . . 6 (𝜑𝐹 Fn 𝐴)
3 caofcan.3 . . . . . . 7 (𝜑𝐺:𝐴𝑆)
43ffnd 6601 . . . . . 6 (𝜑𝐺 Fn 𝐴)
5 caofcan.1 . . . . . 6 (𝜑𝐴𝑉)
6 inidm 4152 . . . . . 6 (𝐴𝐴) = 𝐴
7 eqidd 2739 . . . . . 6 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
8 eqidd 2739 . . . . . 6 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝐺𝑤))
92, 4, 5, 5, 6, 7, 8ofval 7544 . . . . 5 ((𝜑𝑤𝐴) → ((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹𝑤)𝑅(𝐺𝑤)))
10 caofcan.4 . . . . . . 7 (𝜑𝐻:𝐴𝑆)
1110ffnd 6601 . . . . . 6 (𝜑𝐻 Fn 𝐴)
12 eqidd 2739 . . . . . 6 ((𝜑𝑤𝐴) → (𝐻𝑤) = (𝐻𝑤))
132, 11, 5, 5, 6, 7, 12ofval 7544 . . . . 5 ((𝜑𝑤𝐴) → ((𝐹f 𝑅𝐻)‘𝑤) = ((𝐹𝑤)𝑅(𝐻𝑤)))
149, 13eqeq12d 2754 . . . 4 ((𝜑𝑤𝐴) → (((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹f 𝑅𝐻)‘𝑤) ↔ ((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐹𝑤)𝑅(𝐻𝑤))))
15 simpl 483 . . . . 5 ((𝜑𝑤𝐴) → 𝜑)
161ffvelrnda 6961 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑇)
173ffvelrnda 6961 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
1810ffvelrnda 6961 . . . . 5 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
19 caofcan.5 . . . . . 6 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦) = (𝑥𝑅𝑧) ↔ 𝑦 = 𝑧))
2019caovcang 7473 . . . . 5 ((𝜑 ∧ ((𝐹𝑤) ∈ 𝑇 ∧ (𝐺𝑤) ∈ 𝑆 ∧ (𝐻𝑤) ∈ 𝑆)) → (((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐹𝑤)𝑅(𝐻𝑤)) ↔ (𝐺𝑤) = (𝐻𝑤)))
2115, 16, 17, 18, 20syl13anc 1371 . . . 4 ((𝜑𝑤𝐴) → (((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐹𝑤)𝑅(𝐻𝑤)) ↔ (𝐺𝑤) = (𝐻𝑤)))
2214, 21bitrd 278 . . 3 ((𝜑𝑤𝐴) → (((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹f 𝑅𝐻)‘𝑤) ↔ (𝐺𝑤) = (𝐻𝑤)))
2322ralbidva 3111 . 2 (𝜑 → (∀𝑤𝐴 ((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹f 𝑅𝐻)‘𝑤) ↔ ∀𝑤𝐴 (𝐺𝑤) = (𝐻𝑤)))
242, 4, 5, 5, 6offn 7546 . . 3 (𝜑 → (𝐹f 𝑅𝐺) Fn 𝐴)
252, 11, 5, 5, 6offn 7546 . . 3 (𝜑 → (𝐹f 𝑅𝐻) Fn 𝐴)
26 eqfnfv 6909 . . 3 (((𝐹f 𝑅𝐺) Fn 𝐴 ∧ (𝐹f 𝑅𝐻) Fn 𝐴) → ((𝐹f 𝑅𝐺) = (𝐹f 𝑅𝐻) ↔ ∀𝑤𝐴 ((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹f 𝑅𝐻)‘𝑤)))
2724, 25, 26syl2anc 584 . 2 (𝜑 → ((𝐹f 𝑅𝐺) = (𝐹f 𝑅𝐻) ↔ ∀𝑤𝐴 ((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹f 𝑅𝐻)‘𝑤)))
28 eqfnfv 6909 . . 3 ((𝐺 Fn 𝐴𝐻 Fn 𝐴) → (𝐺 = 𝐻 ↔ ∀𝑤𝐴 (𝐺𝑤) = (𝐻𝑤)))
294, 11, 28syl2anc 584 . 2 (𝜑 → (𝐺 = 𝐻 ↔ ∀𝑤𝐴 (𝐺𝑤) = (𝐻𝑤)))
3023, 27, 293bitr4d 311 1 (𝜑 → ((𝐹f 𝑅𝐺) = (𝐹f 𝑅𝐻) ↔ 𝐺 = 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator