Step | Hyp | Ref
| Expression |
1 | | caofcan.2 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶𝑇) |
2 | 1 | ffnd 6597 |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | | caofcan.3 |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
4 | 3 | ffnd 6597 |
. . . . . 6
⊢ (𝜑 → 𝐺 Fn 𝐴) |
5 | | caofcan.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
6 | | inidm 4157 |
. . . . . 6
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
7 | | eqidd 2740 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) |
8 | | eqidd 2740 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) = (𝐺‘𝑤)) |
9 | 2, 4, 5, 5, 6, 7, 8 | ofval 7535 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑤) = ((𝐹‘𝑤)𝑅(𝐺‘𝑤))) |
10 | | caofcan.4 |
. . . . . . 7
⊢ (𝜑 → 𝐻:𝐴⟶𝑆) |
11 | 10 | ffnd 6597 |
. . . . . 6
⊢ (𝜑 → 𝐻 Fn 𝐴) |
12 | | eqidd 2740 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐻‘𝑤) = (𝐻‘𝑤)) |
13 | 2, 11, 5, 5, 6, 7, 12 | ofval 7535 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐻)‘𝑤) = ((𝐹‘𝑤)𝑅(𝐻‘𝑤))) |
14 | 9, 13 | eqeq12d 2755 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (((𝐹 ∘f 𝑅𝐺)‘𝑤) = ((𝐹 ∘f 𝑅𝐻)‘𝑤) ↔ ((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = ((𝐹‘𝑤)𝑅(𝐻‘𝑤)))) |
15 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝜑) |
16 | 1 | ffvelrnda 6955 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑇) |
17 | 3 | ffvelrnda 6955 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
18 | 10 | ffvelrnda 6955 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐻‘𝑤) ∈ 𝑆) |
19 | | caofcan.5 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝑅𝑦) = (𝑥𝑅𝑧) ↔ 𝑦 = 𝑧)) |
20 | 19 | caovcang 7464 |
. . . . 5
⊢ ((𝜑 ∧ ((𝐹‘𝑤) ∈ 𝑇 ∧ (𝐺‘𝑤) ∈ 𝑆 ∧ (𝐻‘𝑤) ∈ 𝑆)) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = ((𝐹‘𝑤)𝑅(𝐻‘𝑤)) ↔ (𝐺‘𝑤) = (𝐻‘𝑤))) |
21 | 15, 16, 17, 18, 20 | syl13anc 1370 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = ((𝐹‘𝑤)𝑅(𝐻‘𝑤)) ↔ (𝐺‘𝑤) = (𝐻‘𝑤))) |
22 | 14, 21 | bitrd 278 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (((𝐹 ∘f 𝑅𝐺)‘𝑤) = ((𝐹 ∘f 𝑅𝐻)‘𝑤) ↔ (𝐺‘𝑤) = (𝐻‘𝑤))) |
23 | 22 | ralbidva 3121 |
. 2
⊢ (𝜑 → (∀𝑤 ∈ 𝐴 ((𝐹 ∘f 𝑅𝐺)‘𝑤) = ((𝐹 ∘f 𝑅𝐻)‘𝑤) ↔ ∀𝑤 ∈ 𝐴 (𝐺‘𝑤) = (𝐻‘𝑤))) |
24 | 2, 4, 5, 5, 6 | offn 7537 |
. . 3
⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝐴) |
25 | 2, 11, 5, 5, 6 | offn 7537 |
. . 3
⊢ (𝜑 → (𝐹 ∘f 𝑅𝐻) Fn 𝐴) |
26 | | eqfnfv 6903 |
. . 3
⊢ (((𝐹 ∘f 𝑅𝐺) Fn 𝐴 ∧ (𝐹 ∘f 𝑅𝐻) Fn 𝐴) → ((𝐹 ∘f 𝑅𝐺) = (𝐹 ∘f 𝑅𝐻) ↔ ∀𝑤 ∈ 𝐴 ((𝐹 ∘f 𝑅𝐺)‘𝑤) = ((𝐹 ∘f 𝑅𝐻)‘𝑤))) |
27 | 24, 25, 26 | syl2anc 583 |
. 2
⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) = (𝐹 ∘f 𝑅𝐻) ↔ ∀𝑤 ∈ 𝐴 ((𝐹 ∘f 𝑅𝐺)‘𝑤) = ((𝐹 ∘f 𝑅𝐻)‘𝑤))) |
28 | | eqfnfv 6903 |
. . 3
⊢ ((𝐺 Fn 𝐴 ∧ 𝐻 Fn 𝐴) → (𝐺 = 𝐻 ↔ ∀𝑤 ∈ 𝐴 (𝐺‘𝑤) = (𝐻‘𝑤))) |
29 | 4, 11, 28 | syl2anc 583 |
. 2
⊢ (𝜑 → (𝐺 = 𝐻 ↔ ∀𝑤 ∈ 𝐴 (𝐺‘𝑤) = (𝐻‘𝑤))) |
30 | 23, 27, 29 | 3bitr4d 310 |
1
⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) = (𝐹 ∘f 𝑅𝐻) ↔ 𝐺 = 𝐻)) |