Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caofcan Structured version   Visualization version   GIF version

Theorem caofcan 44319
Description: Transfer a cancellation law like mulcan 11822 to the function operation. (Contributed by Steve Rodriguez, 16-Nov-2015.)
Hypotheses
Ref Expression
caofcan.1 (𝜑𝐴𝑉)
caofcan.2 (𝜑𝐹:𝐴𝑇)
caofcan.3 (𝜑𝐺:𝐴𝑆)
caofcan.4 (𝜑𝐻:𝐴𝑆)
caofcan.5 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦) = (𝑥𝑅𝑧) ↔ 𝑦 = 𝑧))
Assertion
Ref Expression
caofcan (𝜑 → ((𝐹f 𝑅𝐺) = (𝐹f 𝑅𝐻) ↔ 𝐺 = 𝐻))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem caofcan
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofcan.2 . . . . . . 7 (𝜑𝐹:𝐴𝑇)
21ffnd 6692 . . . . . 6 (𝜑𝐹 Fn 𝐴)
3 caofcan.3 . . . . . . 7 (𝜑𝐺:𝐴𝑆)
43ffnd 6692 . . . . . 6 (𝜑𝐺 Fn 𝐴)
5 caofcan.1 . . . . . 6 (𝜑𝐴𝑉)
6 inidm 4193 . . . . . 6 (𝐴𝐴) = 𝐴
7 eqidd 2731 . . . . . 6 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
8 eqidd 2731 . . . . . 6 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝐺𝑤))
92, 4, 5, 5, 6, 7, 8ofval 7667 . . . . 5 ((𝜑𝑤𝐴) → ((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹𝑤)𝑅(𝐺𝑤)))
10 caofcan.4 . . . . . . 7 (𝜑𝐻:𝐴𝑆)
1110ffnd 6692 . . . . . 6 (𝜑𝐻 Fn 𝐴)
12 eqidd 2731 . . . . . 6 ((𝜑𝑤𝐴) → (𝐻𝑤) = (𝐻𝑤))
132, 11, 5, 5, 6, 7, 12ofval 7667 . . . . 5 ((𝜑𝑤𝐴) → ((𝐹f 𝑅𝐻)‘𝑤) = ((𝐹𝑤)𝑅(𝐻𝑤)))
149, 13eqeq12d 2746 . . . 4 ((𝜑𝑤𝐴) → (((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹f 𝑅𝐻)‘𝑤) ↔ ((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐹𝑤)𝑅(𝐻𝑤))))
15 simpl 482 . . . . 5 ((𝜑𝑤𝐴) → 𝜑)
161ffvelcdmda 7059 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑇)
173ffvelcdmda 7059 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
1810ffvelcdmda 7059 . . . . 5 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
19 caofcan.5 . . . . . 6 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦) = (𝑥𝑅𝑧) ↔ 𝑦 = 𝑧))
2019caovcang 7593 . . . . 5 ((𝜑 ∧ ((𝐹𝑤) ∈ 𝑇 ∧ (𝐺𝑤) ∈ 𝑆 ∧ (𝐻𝑤) ∈ 𝑆)) → (((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐹𝑤)𝑅(𝐻𝑤)) ↔ (𝐺𝑤) = (𝐻𝑤)))
2115, 16, 17, 18, 20syl13anc 1374 . . . 4 ((𝜑𝑤𝐴) → (((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐹𝑤)𝑅(𝐻𝑤)) ↔ (𝐺𝑤) = (𝐻𝑤)))
2214, 21bitrd 279 . . 3 ((𝜑𝑤𝐴) → (((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹f 𝑅𝐻)‘𝑤) ↔ (𝐺𝑤) = (𝐻𝑤)))
2322ralbidva 3155 . 2 (𝜑 → (∀𝑤𝐴 ((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹f 𝑅𝐻)‘𝑤) ↔ ∀𝑤𝐴 (𝐺𝑤) = (𝐻𝑤)))
242, 4, 5, 5, 6offn 7669 . . 3 (𝜑 → (𝐹f 𝑅𝐺) Fn 𝐴)
252, 11, 5, 5, 6offn 7669 . . 3 (𝜑 → (𝐹f 𝑅𝐻) Fn 𝐴)
26 eqfnfv 7006 . . 3 (((𝐹f 𝑅𝐺) Fn 𝐴 ∧ (𝐹f 𝑅𝐻) Fn 𝐴) → ((𝐹f 𝑅𝐺) = (𝐹f 𝑅𝐻) ↔ ∀𝑤𝐴 ((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹f 𝑅𝐻)‘𝑤)))
2724, 25, 26syl2anc 584 . 2 (𝜑 → ((𝐹f 𝑅𝐺) = (𝐹f 𝑅𝐻) ↔ ∀𝑤𝐴 ((𝐹f 𝑅𝐺)‘𝑤) = ((𝐹f 𝑅𝐻)‘𝑤)))
28 eqfnfv 7006 . . 3 ((𝐺 Fn 𝐴𝐻 Fn 𝐴) → (𝐺 = 𝐻 ↔ ∀𝑤𝐴 (𝐺𝑤) = (𝐻𝑤)))
294, 11, 28syl2anc 584 . 2 (𝜑 → (𝐺 = 𝐻 ↔ ∀𝑤𝐴 (𝐺𝑤) = (𝐻𝑤)))
3023, 27, 293bitr4d 311 1 (𝜑 → ((𝐹f 𝑅𝐺) = (𝐹f 𝑅𝐻) ↔ 𝐺 = 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator