MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovcomg Structured version   Visualization version   GIF version

Theorem caovcomg 7607
Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013.)
Hypothesis
Ref Expression
caovcomg.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
Assertion
Ref Expression
caovcomg ((𝜑 ∧ (𝐴𝑆𝐵𝑆)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦

Proof of Theorem caovcomg
StepHypRef Expression
1 caovcomg.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
21ralrimivva 3188 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
3 oveq1 7417 . . . 4 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
4 oveq2 7418 . . . 4 (𝑥 = 𝐴 → (𝑦𝐹𝑥) = (𝑦𝐹𝐴))
53, 4eqeq12d 2752 . . 3 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = (𝑦𝐹𝑥) ↔ (𝐴𝐹𝑦) = (𝑦𝐹𝐴)))
6 oveq2 7418 . . . 4 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
7 oveq1 7417 . . . 4 (𝑦 = 𝐵 → (𝑦𝐹𝐴) = (𝐵𝐹𝐴))
86, 7eqeq12d 2752 . . 3 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = (𝑦𝐹𝐴) ↔ (𝐴𝐹𝐵) = (𝐵𝐹𝐴)))
95, 8rspc2v 3617 . 2 ((𝐴𝑆𝐵𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥𝐹𝑦) = (𝑦𝐹𝑥) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)))
102, 9mpan9 506 1 ((𝜑 ∧ (𝐴𝑆𝐵𝑆)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  (class class class)co 7410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413
This theorem is referenced by:  caovcomd  7608  caovcom  7609  caofcom  7713  seqcaopr  14062  cmncom  19784
  Copyright terms: Public domain W3C validator