![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caovcomg | Structured version Visualization version GIF version |
Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013.) |
Ref | Expression |
---|---|
caovcomg.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
Ref | Expression |
---|---|
caovcomg | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovcomg.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
2 | 1 | ralrimivva 3200 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
3 | oveq1 7415 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦)) | |
4 | oveq2 7416 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦𝐹𝑥) = (𝑦𝐹𝐴)) | |
5 | 3, 4 | eqeq12d 2748 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = (𝑦𝐹𝑥) ↔ (𝐴𝐹𝑦) = (𝑦𝐹𝐴))) |
6 | oveq2 7416 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵)) | |
7 | oveq1 7415 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦𝐹𝐴) = (𝐵𝐹𝐴)) | |
8 | 6, 7 | eqeq12d 2748 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = (𝑦𝐹𝐴) ↔ (𝐴𝐹𝐵) = (𝐵𝐹𝐴))) |
9 | 5, 8 | rspc2v 3622 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) = (𝑦𝐹𝑥) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))) |
10 | 2, 9 | mpan9 507 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 (class class class)co 7408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 |
This theorem is referenced by: caovcomd 7602 caovcom 7603 caofcom 7704 seqcaopr 14004 cmncom 19665 |
Copyright terms: Public domain | W3C validator |