|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > caovcomg | Structured version Visualization version GIF version | ||
| Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| caovcomg.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | 
| Ref | Expression | 
|---|---|
| caovcomg | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caovcomg.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
| 2 | 1 | ralrimivva 3201 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | 
| 3 | oveq1 7439 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦)) | |
| 4 | oveq2 7440 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦𝐹𝑥) = (𝑦𝐹𝐴)) | |
| 5 | 3, 4 | eqeq12d 2752 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = (𝑦𝐹𝑥) ↔ (𝐴𝐹𝑦) = (𝑦𝐹𝐴))) | 
| 6 | oveq2 7440 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵)) | |
| 7 | oveq1 7439 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦𝐹𝐴) = (𝐵𝐹𝐴)) | |
| 8 | 6, 7 | eqeq12d 2752 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = (𝑦𝐹𝐴) ↔ (𝐴𝐹𝐵) = (𝐵𝐹𝐴))) | 
| 9 | 5, 8 | rspc2v 3632 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) = (𝑦𝐹𝑥) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))) | 
| 10 | 2, 9 | mpan9 506 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 (class class class)co 7432 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 | 
| This theorem is referenced by: caovcomd 7630 caovcom 7631 caofcom 7735 seqcaopr 14081 cmncom 19817 | 
| Copyright terms: Public domain | W3C validator |