MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofcom Structured version   Visualization version   GIF version

Theorem caofcom 7690
Description: Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofcom.3 (𝜑𝐺:𝐴𝑆)
caofcom.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥))
Assertion
Ref Expression
caofcom (𝜑 → (𝐹f 𝑅𝐺) = (𝐺f 𝑅𝐹))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem caofcom
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.2 . . . . . 6 (𝜑𝐹:𝐴𝑆)
21ffvelcdmda 7056 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
3 caofcom.3 . . . . . 6 (𝜑𝐺:𝐴𝑆)
43ffvelcdmda 7056 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
52, 4jca 511 . . . 4 ((𝜑𝑤𝐴) → ((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆))
6 caofcom.4 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥))
76caovcomg 7584 . . . 4 ((𝜑 ∧ ((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆)) → ((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐺𝑤)𝑅(𝐹𝑤)))
85, 7syldan 591 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐺𝑤)𝑅(𝐹𝑤)))
98mpteq2dva 5200 . 2 (𝜑 → (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))))
10 caofref.1 . . 3 (𝜑𝐴𝑉)
111feqmptd 6929 . . 3 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
123feqmptd 6929 . . 3 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
1310, 2, 4, 11, 12offval2 7673 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))))
1410, 4, 2, 12, 11offval2 7673 . 2 (𝜑 → (𝐺f 𝑅𝐹) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))))
159, 13, 143eqtr4d 2774 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝐺f 𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653
This theorem is referenced by:  plydivlem4  26204  quotcan  26217  dchrabl  27165  plymulx0  34538  lfladdcom  39065  expgrowth  44324  amgmwlem  49791
  Copyright terms: Public domain W3C validator