MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofcom Structured version   Visualization version   GIF version

Theorem caofcom 7546
Description: Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofcom.3 (𝜑𝐺:𝐴𝑆)
caofcom.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥))
Assertion
Ref Expression
caofcom (𝜑 → (𝐹f 𝑅𝐺) = (𝐺f 𝑅𝐹))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem caofcom
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.2 . . . . . 6 (𝜑𝐹:𝐴𝑆)
21ffvelrnda 6943 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
3 caofcom.3 . . . . . 6 (𝜑𝐺:𝐴𝑆)
43ffvelrnda 6943 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
52, 4jca 511 . . . 4 ((𝜑𝑤𝐴) → ((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆))
6 caofcom.4 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥))
76caovcomg 7445 . . . 4 ((𝜑 ∧ ((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆)) → ((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐺𝑤)𝑅(𝐹𝑤)))
85, 7syldan 590 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐺𝑤)𝑅(𝐹𝑤)))
98mpteq2dva 5170 . 2 (𝜑 → (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))))
10 caofref.1 . . 3 (𝜑𝐴𝑉)
111feqmptd 6819 . . 3 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
123feqmptd 6819 . . 3 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
1310, 2, 4, 11, 12offval2 7531 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))))
1410, 4, 2, 12, 11offval2 7531 . 2 (𝜑 → (𝐺f 𝑅𝐹) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))))
159, 13, 143eqtr4d 2788 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝐺f 𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511
This theorem is referenced by:  plydivlem4  25361  quotcan  25374  dchrabl  26307  plymulx0  32426  lfladdcom  37013  expgrowth  41842  amgmwlem  46392
  Copyright terms: Public domain W3C validator