| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caofcom | Structured version Visualization version GIF version | ||
| Description: Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| Ref | Expression |
|---|---|
| caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| caofcom.3 | ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
| caofcom.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥)) |
| Ref | Expression |
|---|---|
| caofcom | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝐺 ∘f 𝑅𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.2 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 2 | 1 | ffvelcdmda 7056 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
| 3 | caofcom.3 | . . . . . 6 ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) | |
| 4 | 3 | ffvelcdmda 7056 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
| 5 | 2, 4 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆)) |
| 6 | caofcom.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥)) | |
| 7 | 6 | caovcomg 7584 | . . . 4 ⊢ ((𝜑 ∧ ((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆)) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = ((𝐺‘𝑤)𝑅(𝐹‘𝑤))) |
| 8 | 5, 7 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = ((𝐺‘𝑤)𝑅(𝐹‘𝑤))) |
| 9 | 8 | mpteq2dva 5200 | . 2 ⊢ (𝜑 → (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑅(𝐺‘𝑤))) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐹‘𝑤)))) |
| 10 | caofref.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 11 | 1 | feqmptd 6929 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤))) |
| 12 | 3 | feqmptd 6929 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) |
| 13 | 10, 2, 4, 11, 12 | offval2 7673 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑅(𝐺‘𝑤)))) |
| 14 | 10, 4, 2, 12, 11 | offval2 7673 | . 2 ⊢ (𝜑 → (𝐺 ∘f 𝑅𝐹) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐹‘𝑤)))) |
| 15 | 9, 13, 14 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝐺 ∘f 𝑅𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 |
| This theorem is referenced by: plydivlem4 26204 quotcan 26217 dchrabl 27165 plymulx0 34538 lfladdcom 39065 expgrowth 44324 amgmwlem 49791 |
| Copyright terms: Public domain | W3C validator |