MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofcom Structured version   Visualization version   GIF version

Theorem caofcom 7656
Description: Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofcom.3 (𝜑𝐺:𝐴𝑆)
caofcom.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥))
Assertion
Ref Expression
caofcom (𝜑 → (𝐹f 𝑅𝐺) = (𝐺f 𝑅𝐹))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem caofcom
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.2 . . . . . 6 (𝜑𝐹:𝐴𝑆)
21ffvelcdmda 7026 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
3 caofcom.3 . . . . . 6 (𝜑𝐺:𝐴𝑆)
43ffvelcdmda 7026 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
52, 4jca 511 . . . 4 ((𝜑𝑤𝐴) → ((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆))
6 caofcom.4 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥))
76caovcomg 7550 . . . 4 ((𝜑 ∧ ((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆)) → ((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐺𝑤)𝑅(𝐹𝑤)))
85, 7syldan 591 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐺𝑤)𝑅(𝐹𝑤)))
98mpteq2dva 5188 . 2 (𝜑 → (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))))
10 caofref.1 . . 3 (𝜑𝐴𝑉)
111feqmptd 6899 . . 3 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
123feqmptd 6899 . . 3 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
1310, 2, 4, 11, 12offval2 7639 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))))
1410, 4, 2, 12, 11offval2 7639 . 2 (𝜑 → (𝐺f 𝑅𝐹) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))))
159, 13, 143eqtr4d 2778 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝐺f 𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cmpt 5176  wf 6485  cfv 6489  (class class class)co 7355  f cof 7617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619
This theorem is referenced by:  plydivlem4  26251  quotcan  26264  dchrabl  27212  plymulx0  34632  lfladdcom  39244  expgrowth  44492  amgmwlem  49963
  Copyright terms: Public domain W3C validator