Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqcaopr | Structured version Visualization version GIF version |
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-May-2014.) |
Ref | Expression |
---|---|
seqcaopr.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
seqcaopr.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
seqcaopr.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
seqcaopr.4 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
seqcaopr.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) |
seqcaopr.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) |
seqcaopr.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
Ref | Expression |
---|---|
seqcaopr | ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqcaopr.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
2 | 1 | caovclg 7455 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) |
3 | simpl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → 𝜑) | |
4 | simprrl 777 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → 𝑐 ∈ 𝑆) | |
5 | simprlr 776 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → 𝑏 ∈ 𝑆) | |
6 | seqcaopr.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
7 | 6 | caovcomg 7458 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑐 + 𝑏) = (𝑏 + 𝑐)) |
8 | 3, 4, 5, 7 | syl12anc 833 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → (𝑐 + 𝑏) = (𝑏 + 𝑐)) |
9 | 8 | oveq1d 7283 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑐 + 𝑏) + 𝑑) = ((𝑏 + 𝑐) + 𝑑)) |
10 | simprrr 778 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → 𝑑 ∈ 𝑆) | |
11 | seqcaopr.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
12 | 11 | caovassg 7461 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → ((𝑐 + 𝑏) + 𝑑) = (𝑐 + (𝑏 + 𝑑))) |
13 | 3, 4, 5, 10, 12 | syl13anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑐 + 𝑏) + 𝑑) = (𝑐 + (𝑏 + 𝑑))) |
14 | 11 | caovassg 7461 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → ((𝑏 + 𝑐) + 𝑑) = (𝑏 + (𝑐 + 𝑑))) |
15 | 3, 5, 4, 10, 14 | syl13anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑏 + 𝑐) + 𝑑) = (𝑏 + (𝑐 + 𝑑))) |
16 | 9, 13, 15 | 3eqtr3d 2787 | . . . 4 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → (𝑐 + (𝑏 + 𝑑)) = (𝑏 + (𝑐 + 𝑑))) |
17 | 16 | oveq2d 7284 | . . 3 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → (𝑎 + (𝑐 + (𝑏 + 𝑑))) = (𝑎 + (𝑏 + (𝑐 + 𝑑)))) |
18 | simprll 775 | . . . 4 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → 𝑎 ∈ 𝑆) | |
19 | 1 | caovclg 7455 | . . . . 5 ⊢ ((𝜑 ∧ (𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → (𝑏 + 𝑑) ∈ 𝑆) |
20 | 3, 5, 10, 19 | syl12anc 833 | . . . 4 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → (𝑏 + 𝑑) ∈ 𝑆) |
21 | 11 | caovassg 7461 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ∧ (𝑏 + 𝑑) ∈ 𝑆)) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = (𝑎 + (𝑐 + (𝑏 + 𝑑)))) |
22 | 3, 18, 4, 20, 21 | syl13anc 1370 | . . 3 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = (𝑎 + (𝑐 + (𝑏 + 𝑑)))) |
23 | 1 | caovclg 7455 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → (𝑐 + 𝑑) ∈ 𝑆) |
24 | 23 | adantrl 712 | . . . 4 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → (𝑐 + 𝑑) ∈ 𝑆) |
25 | 11 | caovassg 7461 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ (𝑐 + 𝑑) ∈ 𝑆)) → ((𝑎 + 𝑏) + (𝑐 + 𝑑)) = (𝑎 + (𝑏 + (𝑐 + 𝑑)))) |
26 | 3, 18, 5, 24, 25 | syl13anc 1370 | . . 3 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑎 + 𝑏) + (𝑐 + 𝑑)) = (𝑎 + (𝑏 + (𝑐 + 𝑑)))) |
27 | 17, 22, 26 | 3eqtr4d 2789 | . 2 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = ((𝑎 + 𝑏) + (𝑐 + 𝑑))) |
28 | seqcaopr.4 | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
29 | seqcaopr.5 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) | |
30 | seqcaopr.6 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) | |
31 | seqcaopr.7 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) | |
32 | 2, 2, 27, 28, 29, 30, 31 | seqcaopr2 13740 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 ℤ≥cuz 12564 ...cfz 13221 seqcseq 13702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-fzo 13365 df-seq 13703 |
This theorem is referenced by: seradd 13746 prodfmul 15583 mulgnn0di 19408 |
Copyright terms: Public domain | W3C validator |