MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcaopr Structured version   Visualization version   GIF version

Theorem seqcaopr 13222
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
seqcaopr.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqcaopr.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
seqcaopr.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
seqcaopr.4 (𝜑𝑁 ∈ (ℤ𝑀))
seqcaopr.5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
seqcaopr.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)
seqcaopr.7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
Assertion
Ref Expression
seqcaopr (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝑥,𝑘,𝑦,𝑧,𝜑   𝑘,𝑀   + ,𝑘,𝑥,𝑦,𝑧   𝑆,𝑘,𝑥,𝑦,𝑧   𝑘,𝑁
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧)   𝑁(𝑥,𝑦,𝑧)

Proof of Theorem seqcaopr
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqcaopr.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
21caovclg 7156 . 2 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
3 simpl 475 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝜑)
4 simprrl 768 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑐𝑆)
5 simprlr 767 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑏𝑆)
6 seqcaopr.2 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
76caovcomg 7159 . . . . . . 7 ((𝜑 ∧ (𝑐𝑆𝑏𝑆)) → (𝑐 + 𝑏) = (𝑏 + 𝑐))
83, 4, 5, 7syl12anc 824 . . . . . 6 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑐 + 𝑏) = (𝑏 + 𝑐))
98oveq1d 6991 . . . . 5 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑐 + 𝑏) + 𝑑) = ((𝑏 + 𝑐) + 𝑑))
10 simprrr 769 . . . . . 6 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑑𝑆)
11 seqcaopr.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
1211caovassg 7162 . . . . . 6 ((𝜑 ∧ (𝑐𝑆𝑏𝑆𝑑𝑆)) → ((𝑐 + 𝑏) + 𝑑) = (𝑐 + (𝑏 + 𝑑)))
133, 4, 5, 10, 12syl13anc 1352 . . . . 5 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑐 + 𝑏) + 𝑑) = (𝑐 + (𝑏 + 𝑑)))
1411caovassg 7162 . . . . . 6 ((𝜑 ∧ (𝑏𝑆𝑐𝑆𝑑𝑆)) → ((𝑏 + 𝑐) + 𝑑) = (𝑏 + (𝑐 + 𝑑)))
153, 5, 4, 10, 14syl13anc 1352 . . . . 5 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑏 + 𝑐) + 𝑑) = (𝑏 + (𝑐 + 𝑑)))
169, 13, 153eqtr3d 2822 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑐 + (𝑏 + 𝑑)) = (𝑏 + (𝑐 + 𝑑)))
1716oveq2d 6992 . . 3 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑎 + (𝑐 + (𝑏 + 𝑑))) = (𝑎 + (𝑏 + (𝑐 + 𝑑))))
18 simprll 766 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → 𝑎𝑆)
191caovclg 7156 . . . . 5 ((𝜑 ∧ (𝑏𝑆𝑑𝑆)) → (𝑏 + 𝑑) ∈ 𝑆)
203, 5, 10, 19syl12anc 824 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑏 + 𝑑) ∈ 𝑆)
2111caovassg 7162 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑐𝑆 ∧ (𝑏 + 𝑑) ∈ 𝑆)) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = (𝑎 + (𝑐 + (𝑏 + 𝑑))))
223, 18, 4, 20, 21syl13anc 1352 . . 3 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = (𝑎 + (𝑐 + (𝑏 + 𝑑))))
231caovclg 7156 . . . . 5 ((𝜑 ∧ (𝑐𝑆𝑑𝑆)) → (𝑐 + 𝑑) ∈ 𝑆)
2423adantrl 703 . . . 4 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → (𝑐 + 𝑑) ∈ 𝑆)
2511caovassg 7162 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑏𝑆 ∧ (𝑐 + 𝑑) ∈ 𝑆)) → ((𝑎 + 𝑏) + (𝑐 + 𝑑)) = (𝑎 + (𝑏 + (𝑐 + 𝑑))))
263, 18, 5, 24, 25syl13anc 1352 . . 3 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑎 + 𝑏) + (𝑐 + 𝑑)) = (𝑎 + (𝑏 + (𝑐 + 𝑑))))
2717, 22, 263eqtr4d 2824 . 2 ((𝜑 ∧ ((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆))) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = ((𝑎 + 𝑏) + (𝑐 + 𝑑)))
28 seqcaopr.4 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
29 seqcaopr.5 . 2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
30 seqcaopr.6 . 2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)
31 seqcaopr.7 . 2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
322, 2, 27, 28, 29, 30, 31seqcaopr2 13221 1 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  cfv 6188  (class class class)co 6976  cuz 12058  ...cfz 12708  seqcseq 13184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-n0 11708  df-z 11794  df-uz 12059  df-fz 12709  df-fzo 12850  df-seq 13185
This theorem is referenced by:  seradd  13227  prodfmul  15106  mulgnn0di  18704
  Copyright terms: Public domain W3C validator