![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqcaopr | Structured version Visualization version GIF version |
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-May-2014.) |
Ref | Expression |
---|---|
seqcaopr.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
seqcaopr.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
seqcaopr.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
seqcaopr.4 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
seqcaopr.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) |
seqcaopr.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) |
seqcaopr.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
Ref | Expression |
---|---|
seqcaopr | ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqcaopr.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
2 | 1 | caovclg 7156 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) |
3 | simpl 475 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → 𝜑) | |
4 | simprrl 768 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → 𝑐 ∈ 𝑆) | |
5 | simprlr 767 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → 𝑏 ∈ 𝑆) | |
6 | seqcaopr.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
7 | 6 | caovcomg 7159 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑐 + 𝑏) = (𝑏 + 𝑐)) |
8 | 3, 4, 5, 7 | syl12anc 824 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → (𝑐 + 𝑏) = (𝑏 + 𝑐)) |
9 | 8 | oveq1d 6991 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑐 + 𝑏) + 𝑑) = ((𝑏 + 𝑐) + 𝑑)) |
10 | simprrr 769 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → 𝑑 ∈ 𝑆) | |
11 | seqcaopr.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
12 | 11 | caovassg 7162 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → ((𝑐 + 𝑏) + 𝑑) = (𝑐 + (𝑏 + 𝑑))) |
13 | 3, 4, 5, 10, 12 | syl13anc 1352 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑐 + 𝑏) + 𝑑) = (𝑐 + (𝑏 + 𝑑))) |
14 | 11 | caovassg 7162 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → ((𝑏 + 𝑐) + 𝑑) = (𝑏 + (𝑐 + 𝑑))) |
15 | 3, 5, 4, 10, 14 | syl13anc 1352 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑏 + 𝑐) + 𝑑) = (𝑏 + (𝑐 + 𝑑))) |
16 | 9, 13, 15 | 3eqtr3d 2822 | . . . 4 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → (𝑐 + (𝑏 + 𝑑)) = (𝑏 + (𝑐 + 𝑑))) |
17 | 16 | oveq2d 6992 | . . 3 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → (𝑎 + (𝑐 + (𝑏 + 𝑑))) = (𝑎 + (𝑏 + (𝑐 + 𝑑)))) |
18 | simprll 766 | . . . 4 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → 𝑎 ∈ 𝑆) | |
19 | 1 | caovclg 7156 | . . . . 5 ⊢ ((𝜑 ∧ (𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → (𝑏 + 𝑑) ∈ 𝑆) |
20 | 3, 5, 10, 19 | syl12anc 824 | . . . 4 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → (𝑏 + 𝑑) ∈ 𝑆) |
21 | 11 | caovassg 7162 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ∧ (𝑏 + 𝑑) ∈ 𝑆)) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = (𝑎 + (𝑐 + (𝑏 + 𝑑)))) |
22 | 3, 18, 4, 20, 21 | syl13anc 1352 | . . 3 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = (𝑎 + (𝑐 + (𝑏 + 𝑑)))) |
23 | 1 | caovclg 7156 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → (𝑐 + 𝑑) ∈ 𝑆) |
24 | 23 | adantrl 703 | . . . 4 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → (𝑐 + 𝑑) ∈ 𝑆) |
25 | 11 | caovassg 7162 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ (𝑐 + 𝑑) ∈ 𝑆)) → ((𝑎 + 𝑏) + (𝑐 + 𝑑)) = (𝑎 + (𝑏 + (𝑐 + 𝑑)))) |
26 | 3, 18, 5, 24, 25 | syl13anc 1352 | . . 3 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑎 + 𝑏) + (𝑐 + 𝑑)) = (𝑎 + (𝑏 + (𝑐 + 𝑑)))) |
27 | 17, 22, 26 | 3eqtr4d 2824 | . 2 ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = ((𝑎 + 𝑏) + (𝑐 + 𝑑))) |
28 | seqcaopr.4 | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
29 | seqcaopr.5 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) | |
30 | seqcaopr.6 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) | |
31 | seqcaopr.7 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) | |
32 | 2, 2, 27, 28, 29, 30, 31 | seqcaopr2 13221 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ‘cfv 6188 (class class class)co 6976 ℤ≥cuz 12058 ...cfz 12708 seqcseq 13184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-n0 11708 df-z 11794 df-uz 12059 df-fz 12709 df-fzo 12850 df-seq 13185 |
This theorem is referenced by: seradd 13227 prodfmul 15106 mulgnn0di 18704 |
Copyright terms: Public domain | W3C validator |