Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvesumv Structured version   Visualization version   GIF version

Theorem cbvesumv 34040
Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.)
Hypothesis
Ref Expression
cbvesum.1 (𝑗 = 𝑘𝐵 = 𝐶)
Assertion
Ref Expression
cbvesumv Σ*𝑗𝐴𝐵 = Σ*𝑘𝐴𝐶
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑘   𝐶,𝑗
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑘)

Proof of Theorem cbvesumv
StepHypRef Expression
1 cbvesum.1 . . . . 5 (𝑗 = 𝑘𝐵 = 𝐶)
21cbvmptv 5214 . . . 4 (𝑗𝐴𝐵) = (𝑘𝐴𝐶)
32oveq2i 7401 . . 3 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
43unieqi 4886 . 2 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
5 df-esum 34025 . 2 Σ*𝑗𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵))
6 df-esum 34025 . 2 Σ*𝑘𝐴𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
74, 5, 63eqtr4i 2763 1 Σ*𝑗𝐴𝐵 = Σ*𝑘𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   cuni 4874  cmpt 5191  (class class class)co 7390  0cc0 11075  +∞cpnf 11212  [,]cicc 13316  s cress 17207  *𝑠cxrs 17470   tsums ctsu 24020  Σ*cesum 34024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-iota 6467  df-fv 6522  df-ov 7393  df-esum 34025
This theorem is referenced by:  esumcvg2  34084  omssubadd  34298  totprob  34425
  Copyright terms: Public domain W3C validator