Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvesum Structured version   Visualization version   GIF version

Theorem cbvesum 34044
Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.)
Hypotheses
Ref Expression
cbvesum.1 (𝑗 = 𝑘𝐵 = 𝐶)
cbvesum.2 𝑘𝐴
cbvesum.3 𝑗𝐴
cbvesum.4 𝑘𝐵
cbvesum.5 𝑗𝐶
Assertion
Ref Expression
cbvesum Σ*𝑗𝐴𝐵 = Σ*𝑘𝐴𝐶
Distinct variable group:   𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)

Proof of Theorem cbvesum
StepHypRef Expression
1 cbvesum.3 . . . . 5 𝑗𝐴
2 cbvesum.2 . . . . 5 𝑘𝐴
3 cbvesum.4 . . . . 5 𝑘𝐵
4 cbvesum.5 . . . . 5 𝑗𝐶
5 cbvesum.1 . . . . 5 (𝑗 = 𝑘𝐵 = 𝐶)
61, 2, 3, 4, 5cbvmptf 5250 . . . 4 (𝑗𝐴𝐵) = (𝑘𝐴𝐶)
76oveq2i 7443 . . 3 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
87unieqi 4918 . 2 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
9 df-esum 34030 . 2 Σ*𝑗𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵))
10 df-esum 34030 . 2 Σ*𝑘𝐴𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
118, 9, 103eqtr4i 2774 1 Σ*𝑗𝐴𝐵 = Σ*𝑘𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wnfc 2889   cuni 4906  cmpt 5224  (class class class)co 7432  0cc0 11156  +∞cpnf 11293  [,]cicc 13391  s cress 17275  *𝑠cxrs 17546   tsums ctsu 24135  Σ*cesum 34029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-iota 6513  df-fv 6568  df-ov 7435  df-esum 34030
This theorem is referenced by:  esumfzf  34071  carsggect  34321
  Copyright terms: Public domain W3C validator