Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvesum | Structured version Visualization version GIF version |
Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
Ref | Expression |
---|---|
cbvesum.1 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
cbvesum.2 | ⊢ Ⅎ𝑘𝐴 |
cbvesum.3 | ⊢ Ⅎ𝑗𝐴 |
cbvesum.4 | ⊢ Ⅎ𝑘𝐵 |
cbvesum.5 | ⊢ Ⅎ𝑗𝐶 |
Ref | Expression |
---|---|
cbvesum | ⊢ Σ*𝑗 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvesum.3 | . . . . 5 ⊢ Ⅎ𝑗𝐴 | |
2 | cbvesum.2 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
3 | cbvesum.4 | . . . . 5 ⊢ Ⅎ𝑘𝐵 | |
4 | cbvesum.5 | . . . . 5 ⊢ Ⅎ𝑗𝐶 | |
5 | cbvesum.1 | . . . . 5 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
6 | 1, 2, 3, 4, 5 | cbvmptf 5183 | . . . 4 ⊢ (𝑗 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐶) |
7 | 6 | oveq2i 7286 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑗 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) |
8 | 7 | unieqi 4852 | . 2 ⊢ ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑗 ∈ 𝐴 ↦ 𝐵)) = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) |
9 | df-esum 31996 | . 2 ⊢ Σ*𝑗 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑗 ∈ 𝐴 ↦ 𝐵)) | |
10 | df-esum 31996 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐶 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
11 | 8, 9, 10 | 3eqtr4i 2776 | 1 ⊢ Σ*𝑗 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Ⅎwnfc 2887 ∪ cuni 4839 ↦ cmpt 5157 (class class class)co 7275 0cc0 10871 +∞cpnf 11006 [,]cicc 13082 ↾s cress 16941 ℝ*𝑠cxrs 17211 tsums ctsu 23277 Σ*cesum 31995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-iota 6391 df-fv 6441 df-ov 7278 df-esum 31996 |
This theorem is referenced by: cbvesumv 32011 esumfzf 32037 carsggect 32285 |
Copyright terms: Public domain | W3C validator |