Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvesum Structured version   Visualization version   GIF version

Theorem cbvesum 34078
Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.)
Hypotheses
Ref Expression
cbvesum.1 (𝑗 = 𝑘𝐵 = 𝐶)
cbvesum.2 𝑘𝐴
cbvesum.3 𝑗𝐴
cbvesum.4 𝑘𝐵
cbvesum.5 𝑗𝐶
Assertion
Ref Expression
cbvesum Σ*𝑗𝐴𝐵 = Σ*𝑘𝐴𝐶
Distinct variable group:   𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)

Proof of Theorem cbvesum
StepHypRef Expression
1 cbvesum.3 . . . . 5 𝑗𝐴
2 cbvesum.2 . . . . 5 𝑘𝐴
3 cbvesum.4 . . . . 5 𝑘𝐵
4 cbvesum.5 . . . . 5 𝑗𝐶
5 cbvesum.1 . . . . 5 (𝑗 = 𝑘𝐵 = 𝐶)
61, 2, 3, 4, 5cbvmptf 5226 . . . 4 (𝑗𝐴𝐵) = (𝑘𝐴𝐶)
76oveq2i 7421 . . 3 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
87unieqi 4900 . 2 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
9 df-esum 34064 . 2 Σ*𝑗𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵))
10 df-esum 34064 . 2 Σ*𝑘𝐴𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
118, 9, 103eqtr4i 2769 1 Σ*𝑗𝐴𝐵 = Σ*𝑘𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnfc 2884   cuni 4888  cmpt 5206  (class class class)co 7410  0cc0 11134  +∞cpnf 11271  [,]cicc 13370  s cress 17256  *𝑠cxrs 17519   tsums ctsu 24069  Σ*cesum 34063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-iota 6489  df-fv 6544  df-ov 7413  df-esum 34064
This theorem is referenced by:  esumfzf  34105  carsggect  34355
  Copyright terms: Public domain W3C validator