|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvesum | Structured version Visualization version GIF version | ||
| Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.) | 
| Ref | Expression | 
|---|---|
| cbvesum.1 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | 
| cbvesum.2 | ⊢ Ⅎ𝑘𝐴 | 
| cbvesum.3 | ⊢ Ⅎ𝑗𝐴 | 
| cbvesum.4 | ⊢ Ⅎ𝑘𝐵 | 
| cbvesum.5 | ⊢ Ⅎ𝑗𝐶 | 
| Ref | Expression | 
|---|---|
| cbvesum | ⊢ Σ*𝑗 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvesum.3 | . . . . 5 ⊢ Ⅎ𝑗𝐴 | |
| 2 | cbvesum.2 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
| 3 | cbvesum.4 | . . . . 5 ⊢ Ⅎ𝑘𝐵 | |
| 4 | cbvesum.5 | . . . . 5 ⊢ Ⅎ𝑗𝐶 | |
| 5 | cbvesum.1 | . . . . 5 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
| 6 | 1, 2, 3, 4, 5 | cbvmptf 5250 | . . . 4 ⊢ (𝑗 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐶) | 
| 7 | 6 | oveq2i 7443 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑗 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) | 
| 8 | 7 | unieqi 4918 | . 2 ⊢ ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑗 ∈ 𝐴 ↦ 𝐵)) = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) | 
| 9 | df-esum 34030 | . 2 ⊢ Σ*𝑗 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑗 ∈ 𝐴 ↦ 𝐵)) | |
| 10 | df-esum 34030 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐶 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
| 11 | 8, 9, 10 | 3eqtr4i 2774 | 1 ⊢ Σ*𝑗 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶 | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 Ⅎwnfc 2889 ∪ cuni 4906 ↦ cmpt 5224 (class class class)co 7432 0cc0 11156 +∞cpnf 11293 [,]cicc 13391 ↾s cress 17275 ℝ*𝑠cxrs 17546 tsums ctsu 24135 Σ*cesum 34029 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-iota 6513 df-fv 6568 df-ov 7435 df-esum 34030 | 
| This theorem is referenced by: esumfzf 34071 carsggect 34321 | 
| Copyright terms: Public domain | W3C validator |