Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvesum Structured version   Visualization version   GIF version

Theorem cbvesum 34047
Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.)
Hypotheses
Ref Expression
cbvesum.1 (𝑗 = 𝑘𝐵 = 𝐶)
cbvesum.2 𝑘𝐴
cbvesum.3 𝑗𝐴
cbvesum.4 𝑘𝐵
cbvesum.5 𝑗𝐶
Assertion
Ref Expression
cbvesum Σ*𝑗𝐴𝐵 = Σ*𝑘𝐴𝐶
Distinct variable group:   𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)

Proof of Theorem cbvesum
StepHypRef Expression
1 cbvesum.3 . . . . 5 𝑗𝐴
2 cbvesum.2 . . . . 5 𝑘𝐴
3 cbvesum.4 . . . . 5 𝑘𝐵
4 cbvesum.5 . . . . 5 𝑗𝐶
5 cbvesum.1 . . . . 5 (𝑗 = 𝑘𝐵 = 𝐶)
61, 2, 3, 4, 5cbvmptf 5186 . . . 4 (𝑗𝐴𝐵) = (𝑘𝐴𝐶)
76oveq2i 7352 . . 3 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
87unieqi 4866 . 2 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
9 df-esum 34033 . 2 Σ*𝑗𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵))
10 df-esum 34033 . 2 Σ*𝑘𝐴𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
118, 9, 103eqtr4i 2764 1 Σ*𝑗𝐴𝐵 = Σ*𝑘𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wnfc 2879   cuni 4854  cmpt 5167  (class class class)co 7341  0cc0 11001  +∞cpnf 11138  [,]cicc 13243  s cress 17136  *𝑠cxrs 17399   tsums ctsu 24036  Σ*cesum 34032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-iota 6432  df-fv 6484  df-ov 7344  df-esum 34033
This theorem is referenced by:  esumfzf  34074  carsggect  34323
  Copyright terms: Public domain W3C validator