![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvesum | Structured version Visualization version GIF version |
Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
Ref | Expression |
---|---|
cbvesum.1 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
cbvesum.2 | ⊢ Ⅎ𝑘𝐴 |
cbvesum.3 | ⊢ Ⅎ𝑗𝐴 |
cbvesum.4 | ⊢ Ⅎ𝑘𝐵 |
cbvesum.5 | ⊢ Ⅎ𝑗𝐶 |
Ref | Expression |
---|---|
cbvesum | ⊢ Σ*𝑗 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvesum.3 | . . . . 5 ⊢ Ⅎ𝑗𝐴 | |
2 | cbvesum.2 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
3 | cbvesum.4 | . . . . 5 ⊢ Ⅎ𝑘𝐵 | |
4 | cbvesum.5 | . . . . 5 ⊢ Ⅎ𝑗𝐶 | |
5 | cbvesum.1 | . . . . 5 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
6 | 1, 2, 3, 4, 5 | cbvmptf 4941 | . . . 4 ⊢ (𝑗 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐶) |
7 | 6 | oveq2i 6889 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑗 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) |
8 | 7 | unieqi 4637 | . 2 ⊢ ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑗 ∈ 𝐴 ↦ 𝐵)) = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) |
9 | df-esum 30606 | . 2 ⊢ Σ*𝑗 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑗 ∈ 𝐴 ↦ 𝐵)) | |
10 | df-esum 30606 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐶 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
11 | 8, 9, 10 | 3eqtr4i 2831 | 1 ⊢ Σ*𝑗 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 Ⅎwnfc 2928 ∪ cuni 4628 ↦ cmpt 4922 (class class class)co 6878 0cc0 10224 +∞cpnf 10360 [,]cicc 12427 ↾s cress 16185 ℝ*𝑠cxrs 16475 tsums ctsu 22257 Σ*cesum 30605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-iota 6064 df-fv 6109 df-ov 6881 df-esum 30606 |
This theorem is referenced by: cbvesumv 30621 esumfzf 30647 carsggect 30896 |
Copyright terms: Public domain | W3C validator |