Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvesum Structured version   Visualization version   GIF version

Theorem cbvesum 32010
Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.)
Hypotheses
Ref Expression
cbvesum.1 (𝑗 = 𝑘𝐵 = 𝐶)
cbvesum.2 𝑘𝐴
cbvesum.3 𝑗𝐴
cbvesum.4 𝑘𝐵
cbvesum.5 𝑗𝐶
Assertion
Ref Expression
cbvesum Σ*𝑗𝐴𝐵 = Σ*𝑘𝐴𝐶
Distinct variable group:   𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)

Proof of Theorem cbvesum
StepHypRef Expression
1 cbvesum.3 . . . . 5 𝑗𝐴
2 cbvesum.2 . . . . 5 𝑘𝐴
3 cbvesum.4 . . . . 5 𝑘𝐵
4 cbvesum.5 . . . . 5 𝑗𝐶
5 cbvesum.1 . . . . 5 (𝑗 = 𝑘𝐵 = 𝐶)
61, 2, 3, 4, 5cbvmptf 5183 . . . 4 (𝑗𝐴𝐵) = (𝑘𝐴𝐶)
76oveq2i 7286 . . 3 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
87unieqi 4852 . 2 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
9 df-esum 31996 . 2 Σ*𝑗𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵))
10 df-esum 31996 . 2 Σ*𝑘𝐴𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
118, 9, 103eqtr4i 2776 1 Σ*𝑗𝐴𝐵 = Σ*𝑘𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wnfc 2887   cuni 4839  cmpt 5157  (class class class)co 7275  0cc0 10871  +∞cpnf 11006  [,]cicc 13082  s cress 16941  *𝑠cxrs 17211   tsums ctsu 23277  Σ*cesum 31995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-iota 6391  df-fv 6441  df-ov 7278  df-esum 31996
This theorem is referenced by:  cbvesumv  32011  esumfzf  32037  carsggect  32285
  Copyright terms: Public domain W3C validator