| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvesum | Structured version Visualization version GIF version | ||
| Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
| Ref | Expression |
|---|---|
| cbvesum.1 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
| cbvesum.2 | ⊢ Ⅎ𝑘𝐴 |
| cbvesum.3 | ⊢ Ⅎ𝑗𝐴 |
| cbvesum.4 | ⊢ Ⅎ𝑘𝐵 |
| cbvesum.5 | ⊢ Ⅎ𝑗𝐶 |
| Ref | Expression |
|---|---|
| cbvesum | ⊢ Σ*𝑗 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvesum.3 | . . . . 5 ⊢ Ⅎ𝑗𝐴 | |
| 2 | cbvesum.2 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
| 3 | cbvesum.4 | . . . . 5 ⊢ Ⅎ𝑘𝐵 | |
| 4 | cbvesum.5 | . . . . 5 ⊢ Ⅎ𝑗𝐶 | |
| 5 | cbvesum.1 | . . . . 5 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
| 6 | 1, 2, 3, 4, 5 | cbvmptf 5226 | . . . 4 ⊢ (𝑗 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐶) |
| 7 | 6 | oveq2i 7421 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑗 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) |
| 8 | 7 | unieqi 4900 | . 2 ⊢ ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑗 ∈ 𝐴 ↦ 𝐵)) = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) |
| 9 | df-esum 34064 | . 2 ⊢ Σ*𝑗 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑗 ∈ 𝐴 ↦ 𝐵)) | |
| 10 | df-esum 34064 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐶 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
| 11 | 8, 9, 10 | 3eqtr4i 2769 | 1 ⊢ Σ*𝑗 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2884 ∪ cuni 4888 ↦ cmpt 5206 (class class class)co 7410 0cc0 11134 +∞cpnf 11271 [,]cicc 13370 ↾s cress 17256 ℝ*𝑠cxrs 17519 tsums ctsu 24069 Σ*cesum 34063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-iota 6489 df-fv 6544 df-ov 7413 df-esum 34064 |
| This theorem is referenced by: esumfzf 34105 carsggect 34355 |
| Copyright terms: Public domain | W3C validator |