Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumid | Structured version Visualization version GIF version |
Description: Identify the extended sum as any limit points of the infinite sum. (Contributed by Thierry Arnoux, 9-May-2017.) |
Ref | Expression |
---|---|
esumid.p | ⊢ Ⅎ𝑘𝜑 |
esumid.0 | ⊢ Ⅎ𝑘𝐴 |
esumid.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumid.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumid.3 | ⊢ (𝜑 → 𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
Ref | Expression |
---|---|
esumid | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum 32092 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
2 | eqid 2735 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s (0[,]+∞)) | |
3 | esumid.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | esumid.p | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
5 | esumid.0 | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
6 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑘(0[,]+∞) | |
7 | esumid.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
8 | eqid 2735 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
9 | 4, 5, 6, 7, 8 | fmptdF 31091 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
10 | esumid.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) | |
11 | 2, 3, 9, 10 | xrge0tsmseq 31417 | . 2 ⊢ (𝜑 → 𝐶 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
12 | 1, 11 | eqtr4id 2794 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1538 Ⅎwnf 1782 ∈ wcel 2103 Ⅎwnfc 2883 ∪ cuni 4843 ↦ cmpt 5163 (class class class)co 7308 0cc0 10931 +∞cpnf 11066 [,]cicc 13142 ↾s cress 17000 ℝ*𝑠cxrs 17270 tsums ctsu 23340 Σ*cesum 32091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-10 2134 ax-11 2151 ax-12 2168 ax-ext 2706 ax-rep 5217 ax-sep 5231 ax-nul 5238 ax-pow 5296 ax-pr 5360 ax-un 7621 ax-cnex 10987 ax-resscn 10988 ax-1cn 10989 ax-icn 10990 ax-addcl 10991 ax-addrcl 10992 ax-mulcl 10993 ax-mulrcl 10994 ax-mulcom 10995 ax-addass 10996 ax-mulass 10997 ax-distr 10998 ax-i2m1 10999 ax-1ne0 11000 ax-1rid 11001 ax-rnegex 11002 ax-rrecex 11003 ax-cnre 11004 ax-pre-lttri 11005 ax-pre-lttrn 11006 ax-pre-ltadd 11007 ax-pre-mulgt0 11008 ax-pre-sup 11009 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2713 df-cleq 2727 df-clel 2813 df-nfc 2885 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3339 df-reu 3340 df-rab 3357 df-v 3438 df-sbc 3721 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4844 df-int 4886 df-iun 4932 df-iin 4933 df-br 5081 df-opab 5143 df-mpt 5164 df-tr 5198 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7265 df-ov 7311 df-oprab 7312 df-mpo 7313 df-of 7566 df-om 7749 df-1st 7867 df-2nd 7868 df-supp 8013 df-frecs 8132 df-wrecs 8163 df-recs 8237 df-rdg 8276 df-1o 8332 df-er 8534 df-map 8653 df-en 8770 df-dom 8771 df-sdom 8772 df-fin 8773 df-fsupp 9187 df-fi 9228 df-sup 9259 df-inf 9260 df-oi 9327 df-card 9755 df-pnf 11071 df-mnf 11072 df-xr 11073 df-ltxr 11074 df-le 11075 df-sub 11267 df-neg 11268 df-div 11693 df-nn 12034 df-2 12096 df-3 12097 df-4 12098 df-5 12099 df-6 12100 df-7 12101 df-8 12102 df-9 12103 df-n0 12294 df-z 12380 df-dec 12498 df-uz 12643 df-q 12749 df-xadd 12909 df-ioo 13143 df-ioc 13144 df-ico 13145 df-icc 13146 df-fz 13300 df-fzo 13443 df-seq 13782 df-hash 14105 df-struct 16907 df-sets 16924 df-slot 16942 df-ndx 16954 df-base 16972 df-ress 17001 df-plusg 17034 df-mulr 17035 df-tset 17040 df-ple 17041 df-ds 17043 df-rest 17192 df-topn 17193 df-0g 17211 df-gsum 17212 df-topgen 17213 df-ordt 17271 df-xrs 17272 df-mre 17354 df-mrc 17355 df-acs 17357 df-ps 18343 df-tsr 18344 df-mgm 18385 df-sgrp 18434 df-mnd 18445 df-submnd 18490 df-cntz 18982 df-cmn 19447 df-fbas 20657 df-fg 20658 df-top 22106 df-topon 22123 df-topsp 22145 df-bases 22159 df-ntr 22234 df-nei 22312 df-cn 22441 df-haus 22529 df-fil 23060 df-fm 23152 df-flim 23153 df-flf 23154 df-tsms 23341 df-esum 32092 |
This theorem is referenced by: esumgsum 32109 esumsplit 32117 esumadd 32121 esumaddf 32125 esumcocn 32144 |
Copyright terms: Public domain | W3C validator |