![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumid | Structured version Visualization version GIF version |
Description: Identify the extended sum as any limit points of the infinite sum. (Contributed by Thierry Arnoux, 9-May-2017.) |
Ref | Expression |
---|---|
esumid.p | ⊢ Ⅎ𝑘𝜑 |
esumid.0 | ⊢ Ⅎ𝑘𝐴 |
esumid.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumid.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumid.3 | ⊢ (𝜑 → 𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
Ref | Expression |
---|---|
esumid | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum 33984 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
2 | eqid 2740 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s (0[,]+∞)) | |
3 | esumid.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | esumid.p | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
5 | esumid.0 | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
6 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑘(0[,]+∞) | |
7 | esumid.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
8 | eqid 2740 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
9 | 4, 5, 6, 7, 8 | fmptdF 32666 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
10 | esumid.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) | |
11 | 2, 3, 9, 10 | xrge0tsmseq 33035 | . 2 ⊢ (𝜑 → 𝐶 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
12 | 1, 11 | eqtr4id 2799 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ∪ cuni 4931 ↦ cmpt 5249 (class class class)co 7443 0cc0 11178 +∞cpnf 11315 [,]cicc 13404 ↾s cress 17281 ℝ*𝑠cxrs 17554 tsums ctsu 24147 Σ*cesum 33983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 ax-pre-sup 11256 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-se 5651 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-isom 6577 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-of 7708 df-om 7898 df-1st 8024 df-2nd 8025 df-supp 8196 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-2o 8517 df-er 8757 df-map 8880 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-fsupp 9426 df-fi 9474 df-sup 9505 df-inf 9506 df-oi 9573 df-card 10002 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-div 11942 df-nn 12288 df-2 12350 df-3 12351 df-4 12352 df-5 12353 df-6 12354 df-7 12355 df-8 12356 df-9 12357 df-n0 12548 df-z 12634 df-dec 12753 df-uz 12898 df-q 13008 df-xadd 13170 df-ioo 13405 df-ioc 13406 df-ico 13407 df-icc 13408 df-fz 13562 df-fzo 13706 df-seq 14047 df-hash 14374 df-struct 17188 df-sets 17205 df-slot 17223 df-ndx 17235 df-base 17253 df-ress 17282 df-plusg 17318 df-mulr 17319 df-tset 17324 df-ple 17325 df-ds 17327 df-rest 17476 df-topn 17477 df-0g 17495 df-gsum 17496 df-topgen 17497 df-ordt 17555 df-xrs 17556 df-mre 17638 df-mrc 17639 df-acs 17641 df-ps 18630 df-tsr 18631 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-submnd 18813 df-cntz 19351 df-cmn 19818 df-fbas 21378 df-fg 21379 df-top 22913 df-topon 22930 df-topsp 22952 df-bases 22966 df-ntr 23041 df-nei 23119 df-cn 23248 df-haus 23336 df-fil 23867 df-fm 23959 df-flim 23960 df-flf 23961 df-tsms 24148 df-esum 33984 |
This theorem is referenced by: esumgsum 34001 esumsplit 34009 esumadd 34013 esumaddf 34017 esumcocn 34036 |
Copyright terms: Public domain | W3C validator |