Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvmpo1 Structured version   Visualization version   GIF version

Theorem cbvmpo1 42170
Description: Rule to change the first bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
cbvmpo1.1 𝑥𝐵
cbvmpo1.2 𝑧𝐵
cbvmpo1.3 𝑧𝐶
cbvmpo1.4 𝑥𝐸
cbvmpo1.5 (𝑥 = 𝑧𝐶 = 𝐸)
Assertion
Ref Expression
cbvmpo1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑦𝐵𝐸)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   𝐸(𝑥,𝑦,𝑧)

Proof of Theorem cbvmpo1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 nfv 1920 . . . . 5 𝑧 𝑥𝐴
2 cbvmpo1.2 . . . . . 6 𝑧𝐵
32nfcri 2886 . . . . 5 𝑧 𝑦𝐵
41, 3nfan 1905 . . . 4 𝑧(𝑥𝐴𝑦𝐵)
5 cbvmpo1.3 . . . . 5 𝑧𝐶
65nfeq2 2916 . . . 4 𝑧 𝑢 = 𝐶
74, 6nfan 1905 . . 3 𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
8 nfv 1920 . . . . 5 𝑥 𝑧𝐴
9 cbvmpo1.1 . . . . . 6 𝑥𝐵
109nfcri 2886 . . . . 5 𝑥 𝑦𝐵
118, 10nfan 1905 . . . 4 𝑥(𝑧𝐴𝑦𝐵)
12 cbvmpo1.4 . . . . 5 𝑥𝐸
1312nfeq2 2916 . . . 4 𝑥 𝑢 = 𝐸
1411, 13nfan 1905 . . 3 𝑥((𝑧𝐴𝑦𝐵) ∧ 𝑢 = 𝐸)
15 eleq1w 2815 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1615anbi1d 633 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝑦𝐵) ↔ (𝑧𝐴𝑦𝐵)))
17 cbvmpo1.5 . . . . 5 (𝑥 = 𝑧𝐶 = 𝐸)
1817eqeq2d 2749 . . . 4 (𝑥 = 𝑧 → (𝑢 = 𝐶𝑢 = 𝐸))
1916, 18anbi12d 634 . . 3 (𝑥 = 𝑧 → (((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶) ↔ ((𝑧𝐴𝑦𝐵) ∧ 𝑢 = 𝐸)))
207, 14, 19cbvoprab1 7249 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)} = {⟨⟨𝑧, 𝑦⟩, 𝑢⟩ ∣ ((𝑧𝐴𝑦𝐵) ∧ 𝑢 = 𝐸)}
21 df-mpo 7169 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)}
22 df-mpo 7169 . 2 (𝑧𝐴, 𝑦𝐵𝐸) = {⟨⟨𝑧, 𝑦⟩, 𝑢⟩ ∣ ((𝑧𝐴𝑦𝐵) ∧ 𝑢 = 𝐸)}
2320, 21, 223eqtr4i 2771 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑦𝐵𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2113  wnfc 2879  {coprab 7165  cmpo 7166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pr 5293
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-v 3399  df-dif 3844  df-un 3846  df-nul 4210  df-if 4412  df-sn 4514  df-pr 4516  df-op 4520  df-opab 5090  df-oprab 7168  df-mpo 7169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator