Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvmpo1 | Structured version Visualization version GIF version |
Description: Rule to change the first bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
cbvmpo1.1 | ⊢ Ⅎ𝑥𝐵 |
cbvmpo1.2 | ⊢ Ⅎ𝑧𝐵 |
cbvmpo1.3 | ⊢ Ⅎ𝑧𝐶 |
cbvmpo1.4 | ⊢ Ⅎ𝑥𝐸 |
cbvmpo1.5 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
Ref | Expression |
---|---|
cbvmpo1 | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1920 | . . . . 5 ⊢ Ⅎ𝑧 𝑥 ∈ 𝐴 | |
2 | cbvmpo1.2 | . . . . . 6 ⊢ Ⅎ𝑧𝐵 | |
3 | 2 | nfcri 2886 | . . . . 5 ⊢ Ⅎ𝑧 𝑦 ∈ 𝐵 |
4 | 1, 3 | nfan 1905 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
5 | cbvmpo1.3 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
6 | 5 | nfeq2 2916 | . . . 4 ⊢ Ⅎ𝑧 𝑢 = 𝐶 |
7 | 4, 6 | nfan 1905 | . . 3 ⊢ Ⅎ𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶) |
8 | nfv 1920 | . . . . 5 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 | |
9 | cbvmpo1.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
10 | 9 | nfcri 2886 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
11 | 8, 10 | nfan 1905 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
12 | cbvmpo1.4 | . . . . 5 ⊢ Ⅎ𝑥𝐸 | |
13 | 12 | nfeq2 2916 | . . . 4 ⊢ Ⅎ𝑥 𝑢 = 𝐸 |
14 | 11, 13 | nfan 1905 | . . 3 ⊢ Ⅎ𝑥((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐸) |
15 | eleq1w 2815 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
16 | 15 | anbi1d 633 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
17 | cbvmpo1.5 | . . . . 5 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
18 | 17 | eqeq2d 2749 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑢 = 𝐶 ↔ 𝑢 = 𝐸)) |
19 | 16, 18 | anbi12d 634 | . . 3 ⊢ (𝑥 = 𝑧 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶) ↔ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐸))) |
20 | 7, 14, 19 | cbvoprab1 7249 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑢〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶)} = {〈〈𝑧, 𝑦〉, 𝑢〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐸)} |
21 | df-mpo 7169 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑢〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶)} | |
22 | df-mpo 7169 | . 2 ⊢ (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = {〈〈𝑧, 𝑦〉, 𝑢〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐸)} | |
23 | 20, 21, 22 | 3eqtr4i 2771 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 Ⅎwnfc 2879 {coprab 7165 ∈ cmpo 7166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-v 3399 df-dif 3844 df-un 3846 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-opab 5090 df-oprab 7168 df-mpo 7169 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |