Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvmpo1 Structured version   Visualization version   GIF version

Theorem cbvmpo1 41438
Description: Rule to change the first bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
cbvmpo1.1 𝑥𝐵
cbvmpo1.2 𝑧𝐵
cbvmpo1.3 𝑧𝐶
cbvmpo1.4 𝑥𝐸
cbvmpo1.5 (𝑥 = 𝑧𝐶 = 𝐸)
Assertion
Ref Expression
cbvmpo1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑦𝐵𝐸)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   𝐸(𝑥,𝑦,𝑧)

Proof of Theorem cbvmpo1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . 5 𝑧 𝑥𝐴
2 cbvmpo1.2 . . . . . 6 𝑧𝐵
32nfcri 2970 . . . . 5 𝑧 𝑦𝐵
41, 3nfan 1899 . . . 4 𝑧(𝑥𝐴𝑦𝐵)
5 cbvmpo1.3 . . . . 5 𝑧𝐶
65nfeq2 2994 . . . 4 𝑧 𝑢 = 𝐶
74, 6nfan 1899 . . 3 𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
8 nfv 1914 . . . . 5 𝑥 𝑧𝐴
9 cbvmpo1.1 . . . . . 6 𝑥𝐵
109nfcri 2970 . . . . 5 𝑥 𝑦𝐵
118, 10nfan 1899 . . . 4 𝑥(𝑧𝐴𝑦𝐵)
12 cbvmpo1.4 . . . . 5 𝑥𝐸
1312nfeq2 2994 . . . 4 𝑥 𝑢 = 𝐸
1411, 13nfan 1899 . . 3 𝑥((𝑧𝐴𝑦𝐵) ∧ 𝑢 = 𝐸)
15 eleq1w 2894 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1615anbi1d 631 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝑦𝐵) ↔ (𝑧𝐴𝑦𝐵)))
17 cbvmpo1.5 . . . . 5 (𝑥 = 𝑧𝐶 = 𝐸)
1817eqeq2d 2831 . . . 4 (𝑥 = 𝑧 → (𝑢 = 𝐶𝑢 = 𝐸))
1916, 18anbi12d 632 . . 3 (𝑥 = 𝑧 → (((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶) ↔ ((𝑧𝐴𝑦𝐵) ∧ 𝑢 = 𝐸)))
207, 14, 19cbvoprab1 7234 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)} = {⟨⟨𝑧, 𝑦⟩, 𝑢⟩ ∣ ((𝑧𝐴𝑦𝐵) ∧ 𝑢 = 𝐸)}
21 df-mpo 7154 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)}
22 df-mpo 7154 . 2 (𝑧𝐴, 𝑦𝐵𝐸) = {⟨⟨𝑧, 𝑦⟩, 𝑢⟩ ∣ ((𝑧𝐴𝑦𝐵) ∧ 𝑢 = 𝐸)}
2320, 21, 223eqtr4i 2853 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑦𝐵𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wnfc 2960  {coprab 7150  cmpo 7151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-opab 5122  df-oprab 7153  df-mpo 7154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator