![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrel4 | Structured version Visualization version GIF version |
Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6980 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) (Revised by Thierry Arnoux, 11-May-2017.) |
Ref | Expression |
---|---|
dfrel4.1 | ⊢ Ⅎ𝑥𝑅 |
dfrel4.2 | ⊢ Ⅎ𝑦𝑅 |
Ref | Expression |
---|---|
dfrel4 | ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel4v 6221 | . 2 ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏}) | |
2 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥𝑎 | |
3 | dfrel4.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
4 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥𝑏 | |
5 | 2, 3, 4 | nfbr 5213 | . . . 4 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
6 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑦𝑎 | |
7 | dfrel4.2 | . . . . 5 ⊢ Ⅎ𝑦𝑅 | |
8 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑦𝑏 | |
9 | 6, 7, 8 | nfbr 5213 | . . . 4 ⊢ Ⅎ𝑦 𝑎𝑅𝑏 |
10 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑎 𝑥𝑅𝑦 | |
11 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑏 𝑥𝑅𝑦 | |
12 | breq12 5171 | . . . 4 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝑎𝑅𝑏 ↔ 𝑥𝑅𝑦)) | |
13 | 5, 9, 10, 11, 12 | cbvopab 5238 | . . 3 ⊢ {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏} = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
14 | 13 | eqeq2i 2753 | . 2 ⊢ (𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏} ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
15 | 1, 14 | bitri 275 | 1 ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 Ⅎwnfc 2893 class class class wbr 5166 {copab 5228 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: feqmptdf 6992 |
Copyright terms: Public domain | W3C validator |