![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrel4 | Structured version Visualization version GIF version |
Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6974 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) (Revised by Thierry Arnoux, 11-May-2017.) |
Ref | Expression |
---|---|
dfrel4.1 | ⊢ Ⅎ𝑥𝑅 |
dfrel4.2 | ⊢ Ⅎ𝑦𝑅 |
Ref | Expression |
---|---|
dfrel4 | ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel4v 6218 | . 2 ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏}) | |
2 | nfcv 2905 | . . . . 5 ⊢ Ⅎ𝑥𝑎 | |
3 | dfrel4.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
4 | nfcv 2905 | . . . . 5 ⊢ Ⅎ𝑥𝑏 | |
5 | 2, 3, 4 | nfbr 5198 | . . . 4 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
6 | nfcv 2905 | . . . . 5 ⊢ Ⅎ𝑦𝑎 | |
7 | dfrel4.2 | . . . . 5 ⊢ Ⅎ𝑦𝑅 | |
8 | nfcv 2905 | . . . . 5 ⊢ Ⅎ𝑦𝑏 | |
9 | 6, 7, 8 | nfbr 5198 | . . . 4 ⊢ Ⅎ𝑦 𝑎𝑅𝑏 |
10 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑎 𝑥𝑅𝑦 | |
11 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑏 𝑥𝑅𝑦 | |
12 | breq12 5156 | . . . 4 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝑎𝑅𝑏 ↔ 𝑥𝑅𝑦)) | |
13 | 5, 9, 10, 11, 12 | cbvopab 5223 | . . 3 ⊢ {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏} = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
14 | 13 | eqeq2i 2750 | . 2 ⊢ (𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏} ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
15 | 1, 14 | bitri 275 | 1 ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1539 Ⅎwnfc 2890 class class class wbr 5151 {copab 5213 Rel wrel 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-cnv 5701 |
This theorem is referenced by: feqmptdf 6986 |
Copyright terms: Public domain | W3C validator |