MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrel4 Structured version   Visualization version   GIF version

Theorem dfrel4 6035
Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6715 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) (Revised by Thierry Arnoux, 11-May-2017.)
Hypotheses
Ref Expression
dfrel4.1 𝑥𝑅
dfrel4.2 𝑦𝑅
Assertion
Ref Expression
dfrel4 (Rel 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem dfrel4
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrel4v 6034 . 2 (Rel 𝑅𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎𝑅𝑏})
2 nfcv 2982 . . . . 5 𝑥𝑎
3 dfrel4.1 . . . . 5 𝑥𝑅
4 nfcv 2982 . . . . 5 𝑥𝑏
52, 3, 4nfbr 5099 . . . 4 𝑥 𝑎𝑅𝑏
6 nfcv 2982 . . . . 5 𝑦𝑎
7 dfrel4.2 . . . . 5 𝑦𝑅
8 nfcv 2982 . . . . 5 𝑦𝑏
96, 7, 8nfbr 5099 . . . 4 𝑦 𝑎𝑅𝑏
10 nfv 1916 . . . 4 𝑎 𝑥𝑅𝑦
11 nfv 1916 . . . 4 𝑏 𝑥𝑅𝑦
12 breq12 5057 . . . 4 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎𝑅𝑏𝑥𝑅𝑦))
135, 9, 10, 11, 12cbvopab 5123 . . 3 {⟨𝑎, 𝑏⟩ ∣ 𝑎𝑅𝑏} = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}
1413eqeq2i 2837 . 2 (𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎𝑅𝑏} ↔ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
151, 14bitri 278 1 (Rel 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1538  wnfc 2962   class class class wbr 5052  {copab 5114  Rel wrel 5547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-v 3482  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-br 5053  df-opab 5115  df-xp 5548  df-rel 5549  df-cnv 5550
This theorem is referenced by:  feqmptdf  6726
  Copyright terms: Public domain W3C validator