| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrel4 | Structured version Visualization version GIF version | ||
| Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6880 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) (Revised by Thierry Arnoux, 11-May-2017.) |
| Ref | Expression |
|---|---|
| dfrel4.1 | ⊢ Ⅎ𝑥𝑅 |
| dfrel4.2 | ⊢ Ⅎ𝑦𝑅 |
| Ref | Expression |
|---|---|
| dfrel4 | ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel4v 6137 | . 2 ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏}) | |
| 2 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥𝑎 | |
| 3 | dfrel4.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
| 4 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥𝑏 | |
| 5 | 2, 3, 4 | nfbr 5136 | . . . 4 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
| 6 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑦𝑎 | |
| 7 | dfrel4.2 | . . . . 5 ⊢ Ⅎ𝑦𝑅 | |
| 8 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑦𝑏 | |
| 9 | 6, 7, 8 | nfbr 5136 | . . . 4 ⊢ Ⅎ𝑦 𝑎𝑅𝑏 |
| 10 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑎 𝑥𝑅𝑦 | |
| 11 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑏 𝑥𝑅𝑦 | |
| 12 | breq12 5094 | . . . 4 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝑎𝑅𝑏 ↔ 𝑥𝑅𝑦)) | |
| 13 | 5, 9, 10, 11, 12 | cbvopab 5161 | . . 3 ⊢ {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏} = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
| 14 | 13 | eqeq2i 2744 | . 2 ⊢ (𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏} ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
| 15 | 1, 14 | bitri 275 | 1 ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Ⅎwnfc 2879 class class class wbr 5089 {copab 5151 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 |
| This theorem is referenced by: feqmptdf 6892 |
| Copyright terms: Public domain | W3C validator |