| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrel4 | Structured version Visualization version GIF version | ||
| Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6947 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) (Revised by Thierry Arnoux, 11-May-2017.) |
| Ref | Expression |
|---|---|
| dfrel4.1 | ⊢ Ⅎ𝑥𝑅 |
| dfrel4.2 | ⊢ Ⅎ𝑦𝑅 |
| Ref | Expression |
|---|---|
| dfrel4 | ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel4v 6190 | . 2 ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏}) | |
| 2 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑥𝑎 | |
| 3 | dfrel4.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
| 4 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑥𝑏 | |
| 5 | 2, 3, 4 | nfbr 5170 | . . . 4 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
| 6 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑦𝑎 | |
| 7 | dfrel4.2 | . . . . 5 ⊢ Ⅎ𝑦𝑅 | |
| 8 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑦𝑏 | |
| 9 | 6, 7, 8 | nfbr 5170 | . . . 4 ⊢ Ⅎ𝑦 𝑎𝑅𝑏 |
| 10 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑎 𝑥𝑅𝑦 | |
| 11 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑏 𝑥𝑅𝑦 | |
| 12 | breq12 5128 | . . . 4 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝑎𝑅𝑏 ↔ 𝑥𝑅𝑦)) | |
| 13 | 5, 9, 10, 11, 12 | cbvopab 5195 | . . 3 ⊢ {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏} = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
| 14 | 13 | eqeq2i 2747 | . 2 ⊢ (𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏} ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
| 15 | 1, 14 | bitri 275 | 1 ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 Ⅎwnfc 2882 class class class wbr 5123 {copab 5185 Rel wrel 5670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 |
| This theorem is referenced by: feqmptdf 6959 |
| Copyright terms: Public domain | W3C validator |