![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrel4 | Structured version Visualization version GIF version |
Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6503 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) (Revised by Thierry Arnoux, 11-May-2017.) |
Ref | Expression |
---|---|
dfrel4.1 | ⊢ Ⅎ𝑥𝑅 |
dfrel4.2 | ⊢ Ⅎ𝑦𝑅 |
Ref | Expression |
---|---|
dfrel4 | ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel4v 5840 | . 2 ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏}) | |
2 | nfcv 2934 | . . . . 5 ⊢ Ⅎ𝑥𝑎 | |
3 | dfrel4.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
4 | nfcv 2934 | . . . . 5 ⊢ Ⅎ𝑥𝑏 | |
5 | 2, 3, 4 | nfbr 4935 | . . . 4 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
6 | nfcv 2934 | . . . . 5 ⊢ Ⅎ𝑦𝑎 | |
7 | dfrel4.2 | . . . . 5 ⊢ Ⅎ𝑦𝑅 | |
8 | nfcv 2934 | . . . . 5 ⊢ Ⅎ𝑦𝑏 | |
9 | 6, 7, 8 | nfbr 4935 | . . . 4 ⊢ Ⅎ𝑦 𝑎𝑅𝑏 |
10 | nfv 1957 | . . . 4 ⊢ Ⅎ𝑎 𝑥𝑅𝑦 | |
11 | nfv 1957 | . . . 4 ⊢ Ⅎ𝑏 𝑥𝑅𝑦 | |
12 | breq12 4893 | . . . 4 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝑎𝑅𝑏 ↔ 𝑥𝑅𝑦)) | |
13 | 5, 9, 10, 11, 12 | cbvopab 4959 | . . 3 ⊢ {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏} = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
14 | 13 | eqeq2i 2790 | . 2 ⊢ (𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏} ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
15 | 1, 14 | bitri 267 | 1 ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1601 Ⅎwnfc 2919 class class class wbr 4888 {copab 4950 Rel wrel 5362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4889 df-opab 4951 df-xp 5363 df-rel 5364 df-cnv 5365 |
This theorem is referenced by: feqmptdf 6513 |
Copyright terms: Public domain | W3C validator |