![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrel4 | Structured version Visualization version GIF version |
Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6949 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) (Revised by Thierry Arnoux, 11-May-2017.) |
Ref | Expression |
---|---|
dfrel4.1 | ⊢ Ⅎ𝑥𝑅 |
dfrel4.2 | ⊢ Ⅎ𝑦𝑅 |
Ref | Expression |
---|---|
dfrel4 | ⊢ (Rel 𝑅 ↔ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel4v 6188 | . 2 ⊢ (Rel 𝑅 ↔ 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎𝑅𝑏}) | |
2 | nfcv 2901 | . . . . 5 ⊢ Ⅎ𝑥𝑎 | |
3 | dfrel4.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
4 | nfcv 2901 | . . . . 5 ⊢ Ⅎ𝑥𝑏 | |
5 | 2, 3, 4 | nfbr 5194 | . . . 4 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
6 | nfcv 2901 | . . . . 5 ⊢ Ⅎ𝑦𝑎 | |
7 | dfrel4.2 | . . . . 5 ⊢ Ⅎ𝑦𝑅 | |
8 | nfcv 2901 | . . . . 5 ⊢ Ⅎ𝑦𝑏 | |
9 | 6, 7, 8 | nfbr 5194 | . . . 4 ⊢ Ⅎ𝑦 𝑎𝑅𝑏 |
10 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑎 𝑥𝑅𝑦 | |
11 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑏 𝑥𝑅𝑦 | |
12 | breq12 5152 | . . . 4 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝑎𝑅𝑏 ↔ 𝑥𝑅𝑦)) | |
13 | 5, 9, 10, 11, 12 | cbvopab 5219 | . . 3 ⊢ {⟨𝑎, 𝑏⟩ ∣ 𝑎𝑅𝑏} = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} |
14 | 13 | eqeq2i 2743 | . 2 ⊢ (𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎𝑅𝑏} ↔ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}) |
15 | 1, 14 | bitri 274 | 1 ⊢ (Rel 𝑅 ↔ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 Ⅎwnfc 2881 class class class wbr 5147 {copab 5209 Rel wrel 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 |
This theorem is referenced by: feqmptdf 6961 |
Copyright terms: Public domain | W3C validator |