| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrel4 | Structured version Visualization version GIF version | ||
| Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6921 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) (Revised by Thierry Arnoux, 11-May-2017.) |
| Ref | Expression |
|---|---|
| dfrel4.1 | ⊢ Ⅎ𝑥𝑅 |
| dfrel4.2 | ⊢ Ⅎ𝑦𝑅 |
| Ref | Expression |
|---|---|
| dfrel4 | ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel4v 6165 | . 2 ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏}) | |
| 2 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝑎 | |
| 3 | dfrel4.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
| 4 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝑏 | |
| 5 | 2, 3, 4 | nfbr 5156 | . . . 4 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
| 6 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑦𝑎 | |
| 7 | dfrel4.2 | . . . . 5 ⊢ Ⅎ𝑦𝑅 | |
| 8 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑦𝑏 | |
| 9 | 6, 7, 8 | nfbr 5156 | . . . 4 ⊢ Ⅎ𝑦 𝑎𝑅𝑏 |
| 10 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑎 𝑥𝑅𝑦 | |
| 11 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑏 𝑥𝑅𝑦 | |
| 12 | breq12 5114 | . . . 4 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝑎𝑅𝑏 ↔ 𝑥𝑅𝑦)) | |
| 13 | 5, 9, 10, 11, 12 | cbvopab 5181 | . . 3 ⊢ {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏} = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
| 14 | 13 | eqeq2i 2743 | . 2 ⊢ (𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎𝑅𝑏} ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
| 15 | 1, 14 | bitri 275 | 1 ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Ⅎwnfc 2877 class class class wbr 5109 {copab 5171 Rel wrel 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-cnv 5648 |
| This theorem is referenced by: feqmptdf 6933 |
| Copyright terms: Public domain | W3C validator |