MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrel4 Structured version   Visualization version   GIF version

Theorem dfrel4 5841
Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6503 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) (Revised by Thierry Arnoux, 11-May-2017.)
Hypotheses
Ref Expression
dfrel4.1 𝑥𝑅
dfrel4.2 𝑦𝑅
Assertion
Ref Expression
dfrel4 (Rel 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem dfrel4
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrel4v 5840 . 2 (Rel 𝑅𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎𝑅𝑏})
2 nfcv 2934 . . . . 5 𝑥𝑎
3 dfrel4.1 . . . . 5 𝑥𝑅
4 nfcv 2934 . . . . 5 𝑥𝑏
52, 3, 4nfbr 4935 . . . 4 𝑥 𝑎𝑅𝑏
6 nfcv 2934 . . . . 5 𝑦𝑎
7 dfrel4.2 . . . . 5 𝑦𝑅
8 nfcv 2934 . . . . 5 𝑦𝑏
96, 7, 8nfbr 4935 . . . 4 𝑦 𝑎𝑅𝑏
10 nfv 1957 . . . 4 𝑎 𝑥𝑅𝑦
11 nfv 1957 . . . 4 𝑏 𝑥𝑅𝑦
12 breq12 4893 . . . 4 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎𝑅𝑏𝑥𝑅𝑦))
135, 9, 10, 11, 12cbvopab 4959 . . 3 {⟨𝑎, 𝑏⟩ ∣ 𝑎𝑅𝑏} = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}
1413eqeq2i 2790 . 2 (𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎𝑅𝑏} ↔ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
151, 14bitri 267 1 (Rel 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1601  wnfc 2919   class class class wbr 4888  {copab 4950  Rel wrel 5362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4889  df-opab 4951  df-xp 5363  df-rel 5364  df-cnv 5365
This theorem is referenced by:  feqmptdf  6513
  Copyright terms: Public domain W3C validator