Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfopab2 | Structured version Visualization version GIF version |
Description: The second abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfopab2 | ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 5096 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
2 | nfe1 2152 | . . . 4 ⊢ Ⅎ𝑦∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) | |
3 | 2 | nfex 2333 | . . 3 ⊢ Ⅎ𝑦∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
4 | 3 | nfab 2926 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
5 | 1, 4 | nfcxfr 2918 | 1 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 400 = wceq 1539 ∃wex 1782 {cab 2736 Ⅎwnfc 2900 〈cop 4529 {copab 5095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-opab 5096 |
This theorem is referenced by: rexopabb 5386 ssopab2bw 5405 ssopab2b 5407 0nelopab 5423 dmopab 5756 rnopab 5796 funopab 6371 fvopab5 6792 zfrep6 7661 opabdm 30474 opabrn 30475 fpwrelmap 30593 bj-opabco 34884 vvdifopab 35962 aomclem8 40379 areaquad 40540 sprsymrelf 44381 |
Copyright terms: Public domain | W3C validator |