MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfopab2 Structured version   Visualization version   GIF version

Theorem nfopab2 5225
Description: The second abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfopab2 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem nfopab2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-opab 5217 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
2 nfe1 2143 . . . 4 𝑦𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
32nfex 2316 . . 3 𝑦𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
43nfab 2901 . 2 𝑦{𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
51, 4nfcxfr 2893 1 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1534  wex 1774  {cab 2706  wnfc 2879  cop 4640  {copab 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2102  ax-9 2110  ax-10 2133  ax-11 2150  ax-12 2170  ax-ext 2700
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1775  df-nf 1779  df-sb 2062  df-clab 2707  df-cleq 2721  df-clel 2806  df-nfc 2881  df-opab 5217
This theorem is referenced by:  rexopabb  5536  ssopab2bw  5555  ssopab2b  5557  0nelopabOLD  5576  dmopab  5924  rnopab  5963  funopab  6597  fvopab5  7045  zfrep6  7974  opabdm  32578  opabrn  32579  fpwrelmap  32693  fineqvrep  35017  bj-opabco  36981  vvdifopab  38044  aomclem8  42837  areaquad  42996  sprsymrelf  47181
  Copyright terms: Public domain W3C validator