![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfopab2 | Structured version Visualization version GIF version |
Description: The second abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfopab2 | ⊢ Ⅎ𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 5211 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
2 | nfe1 2147 | . . . 4 ⊢ Ⅎ𝑦∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) | |
3 | 2 | nfex 2317 | . . 3 ⊢ Ⅎ𝑦∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
4 | 3 | nfab 2909 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} |
5 | 1, 4 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∃wex 1781 {cab 2709 Ⅎwnfc 2883 ⟨cop 4634 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-opab 5211 |
This theorem is referenced by: rexopabb 5528 ssopab2bw 5547 ssopab2b 5549 0nelopabOLD 5568 dmopab 5915 rnopab 5953 funopab 6583 fvopab5 7030 zfrep6 7943 opabdm 32095 opabrn 32096 fpwrelmap 32213 fineqvrep 34381 bj-opabco 36372 vvdifopab 37431 aomclem8 42105 areaquad 42267 sprsymrelf 46462 |
Copyright terms: Public domain | W3C validator |