MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfopab2 Structured version   Visualization version   GIF version

Theorem nfopab2 5190
Description: The second abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfopab2 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem nfopab2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-opab 5182 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
2 nfe1 2150 . . . 4 𝑦𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
32nfex 2324 . . 3 𝑦𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
43nfab 2904 . 2 𝑦{𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
51, 4nfcxfr 2896 1 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  {cab 2713  wnfc 2883  cop 4607  {copab 5181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-opab 5182
This theorem is referenced by:  rexopabb  5503  ssopab2bw  5522  ssopab2b  5524  dmopab  5895  rnopab  5934  funopab  6571  fvopab5  7019  zfrep6  7953  opabdm  32591  opabrn  32592  fpwrelmap  32710  fineqvrep  35126  bj-opabco  37206  vvdifopab  38278  aomclem8  43085  areaquad  43240  modelaxrep  45006  sprsymrelf  47509
  Copyright terms: Public domain W3C validator