MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfopab2 Structured version   Visualization version   GIF version

Theorem nfopab2 5145
Description: The second abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfopab2 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem nfopab2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-opab 5137 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
2 nfe1 2147 . . . 4 𝑦𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
32nfex 2318 . . 3 𝑦𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
43nfab 2913 . 2 𝑦{𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
51, 4nfcxfr 2905 1 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wex 1782  {cab 2715  wnfc 2887  cop 4567  {copab 5136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-opab 5137
This theorem is referenced by:  rexopabb  5441  ssopab2bw  5460  ssopab2b  5462  0nelopabOLD  5481  dmopab  5824  rnopab  5863  funopab  6469  fvopab5  6907  zfrep6  7797  opabdm  30951  opabrn  30952  fpwrelmap  31068  fineqvrep  33064  bj-opabco  35359  vvdifopab  36399  aomclem8  40886  areaquad  41047  sprsymrelf  44947
  Copyright terms: Public domain W3C validator