| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfopab2 | Structured version Visualization version GIF version | ||
| Description: The second abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfopab2 | ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opab 5217 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 2 | nfe1 2143 | . . . 4 ⊢ Ⅎ𝑦∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) | |
| 3 | 2 | nfex 2316 | . . 3 ⊢ Ⅎ𝑦∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 4 | 3 | nfab 2901 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| 5 | 1, 4 | nfcxfr 2893 | 1 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 394 = wceq 1534 ∃wex 1774 {cab 2706 Ⅎwnfc 2879 〈cop 4640 {copab 5216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2102 ax-9 2110 ax-10 2133 ax-11 2150 ax-12 2170 ax-ext 2700 |
| This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1775 df-nf 1779 df-sb 2062 df-clab 2707 df-cleq 2721 df-clel 2806 df-nfc 2881 df-opab 5217 |
| This theorem is referenced by: rexopabb 5536 ssopab2bw 5555 ssopab2b 5557 0nelopabOLD 5576 dmopab 5924 rnopab 5963 funopab 6597 fvopab5 7045 zfrep6 7974 opabdm 32578 opabrn 32579 fpwrelmap 32693 fineqvrep 35017 bj-opabco 36981 vvdifopab 38044 aomclem8 42837 areaquad 42996 sprsymrelf 47181 |
| Copyright terms: Public domain | W3C validator |