| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfopab2 | Structured version Visualization version GIF version | ||
| Description: The second abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfopab2 | ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opab 5182 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 2 | nfe1 2150 | . . . 4 ⊢ Ⅎ𝑦∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) | |
| 3 | 2 | nfex 2324 | . . 3 ⊢ Ⅎ𝑦∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 4 | 3 | nfab 2904 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| 5 | 1, 4 | nfcxfr 2896 | 1 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 {cab 2713 Ⅎwnfc 2883 〈cop 4607 {copab 5181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-opab 5182 |
| This theorem is referenced by: rexopabb 5503 ssopab2bw 5522 ssopab2b 5524 dmopab 5895 rnopab 5934 funopab 6571 fvopab5 7019 zfrep6 7953 opabdm 32591 opabrn 32592 fpwrelmap 32710 fineqvrep 35126 bj-opabco 37206 vvdifopab 38278 aomclem8 43085 areaquad 43240 modelaxrep 45006 sprsymrelf 47509 |
| Copyright terms: Public domain | W3C validator |