MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmvsdi Structured version   Visualization version   GIF version

Theorem clmvsdi 25032
Description: Distributive law for scalar product (left-distributivity). (lmodvsdi 20768 analog.) (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.)
Hypotheses
Ref Expression
clmvscl.v 𝑉 = (Base‘𝑊)
clmvscl.f 𝐹 = (Scalar‘𝑊)
clmvscl.s · = ( ·𝑠𝑊)
clmvscl.k 𝐾 = (Base‘𝐹)
clmvsdir.a + = (+g𝑊)
Assertion
Ref Expression
clmvsdi ((𝑊 ∈ ℂMod ∧ (𝐴𝐾𝑋𝑉𝑌𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌)))

Proof of Theorem clmvsdi
StepHypRef Expression
1 clmlmod 25007 . 2 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2 clmvscl.v . . 3 𝑉 = (Base‘𝑊)
3 clmvsdir.a . . 3 + = (+g𝑊)
4 clmvscl.f . . 3 𝐹 = (Scalar‘𝑊)
5 clmvscl.s . . 3 · = ( ·𝑠𝑊)
6 clmvscl.k . . 3 𝐾 = (Base‘𝐹)
72, 3, 4, 5, 6lmodvsdi 20768 . 2 ((𝑊 ∈ LMod ∧ (𝐴𝐾𝑋𝑉𝑌𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌)))
81, 7sylan 579 1 ((𝑊 ∈ ℂMod ∧ (𝐴𝐾𝑋𝑉𝑌𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  cfv 6548  (class class class)co 7420  Basecbs 17180  +gcplusg 17233  Scalarcsca 17236   ·𝑠 cvsca 17237  LModclmod 20743  ℂModcclm 25002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-iota 6500  df-fv 6556  df-ov 7423  df-lmod 20745  df-clm 25003
This theorem is referenced by:  clmnegsubdi2  25045  clmsub4  25046  ncvspi  25097
  Copyright terms: Public domain W3C validator