| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmvsdi | Structured version Visualization version GIF version | ||
| Description: Distributive law for scalar product (left-distributivity). (lmodvsdi 20798 analog.) (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.) |
| Ref | Expression |
|---|---|
| clmvscl.v | ⊢ 𝑉 = (Base‘𝑊) |
| clmvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| clmvscl.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| clmvscl.k | ⊢ 𝐾 = (Base‘𝐹) |
| clmvsdir.a | ⊢ + = (+g‘𝑊) |
| Ref | Expression |
|---|---|
| clmvsdi | ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmlmod 24974 | . 2 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
| 2 | clmvscl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | clmvsdir.a | . . 3 ⊢ + = (+g‘𝑊) | |
| 4 | clmvscl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | clmvscl.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 6 | clmvscl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 7 | 2, 3, 4, 5, 6 | lmodvsdi 20798 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) |
| 8 | 1, 7 | sylan 580 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Scalarcsca 17230 ·𝑠 cvsca 17231 LModclmod 20773 ℂModcclm 24969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-lmod 20775 df-clm 24970 |
| This theorem is referenced by: clmnegsubdi2 25012 clmsub4 25013 ncvspi 25063 |
| Copyright terms: Public domain | W3C validator |