| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmvsdi | Structured version Visualization version GIF version | ||
| Description: Distributive law for scalar product (left-distributivity). (lmodvsdi 20822 analog.) (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.) |
| Ref | Expression |
|---|---|
| clmvscl.v | ⊢ 𝑉 = (Base‘𝑊) |
| clmvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| clmvscl.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| clmvscl.k | ⊢ 𝐾 = (Base‘𝐹) |
| clmvsdir.a | ⊢ + = (+g‘𝑊) |
| Ref | Expression |
|---|---|
| clmvsdi | ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmlmod 24997 | . 2 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
| 2 | clmvscl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | clmvsdir.a | . . 3 ⊢ + = (+g‘𝑊) | |
| 4 | clmvscl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | clmvscl.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 6 | clmvscl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 7 | 2, 3, 4, 5, 6 | lmodvsdi 20822 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) |
| 8 | 1, 7 | sylan 580 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 +gcplusg 17165 Scalarcsca 17168 ·𝑠 cvsca 17169 LModclmod 20797 ℂModcclm 24992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-ov 7357 df-lmod 20799 df-clm 24993 |
| This theorem is referenced by: clmnegsubdi2 25035 clmsub4 25036 ncvspi 25086 |
| Copyright terms: Public domain | W3C validator |