MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmvsdi Structured version   Visualization version   GIF version

Theorem clmvsdi 24161
Description: Distributive law for scalar product (left-distributivity). (lmodvsdi 20061 analog.) (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.)
Hypotheses
Ref Expression
clmvscl.v 𝑉 = (Base‘𝑊)
clmvscl.f 𝐹 = (Scalar‘𝑊)
clmvscl.s · = ( ·𝑠𝑊)
clmvscl.k 𝐾 = (Base‘𝐹)
clmvsdir.a + = (+g𝑊)
Assertion
Ref Expression
clmvsdi ((𝑊 ∈ ℂMod ∧ (𝐴𝐾𝑋𝑉𝑌𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌)))

Proof of Theorem clmvsdi
StepHypRef Expression
1 clmlmod 24136 . 2 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2 clmvscl.v . . 3 𝑉 = (Base‘𝑊)
3 clmvsdir.a . . 3 + = (+g𝑊)
4 clmvscl.f . . 3 𝐹 = (Scalar‘𝑊)
5 clmvscl.s . . 3 · = ( ·𝑠𝑊)
6 clmvscl.k . . 3 𝐾 = (Base‘𝐹)
72, 3, 4, 5, 6lmodvsdi 20061 . 2 ((𝑊 ∈ LMod ∧ (𝐴𝐾𝑋𝑉𝑌𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌)))
81, 7sylan 579 1 ((𝑊 ∈ ℂMod ∧ (𝐴𝐾𝑋𝑉𝑌𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  LModclmod 20038  ℂModcclm 24131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-lmod 20040  df-clm 24132
This theorem is referenced by:  clmnegsubdi2  24174  clmsub4  24175  ncvspi  24225
  Copyright terms: Public domain W3C validator