Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clmvsdi | Structured version Visualization version GIF version |
Description: Distributive law for scalar product (left-distributivity). (lmodvsdi 19769 analog.) (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.) |
Ref | Expression |
---|---|
clmvscl.v | ⊢ 𝑉 = (Base‘𝑊) |
clmvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
clmvscl.s | ⊢ · = ( ·𝑠 ‘𝑊) |
clmvscl.k | ⊢ 𝐾 = (Base‘𝐹) |
clmvsdir.a | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
clmvsdi | ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmlmod 23812 | . 2 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
2 | clmvscl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | clmvsdir.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | clmvscl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | clmvscl.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | clmvscl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
7 | 2, 3, 4, 5, 6 | lmodvsdi 19769 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) |
8 | 1, 7 | sylan 583 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 ‘cfv 6333 (class class class)co 7164 Basecbs 16579 +gcplusg 16661 Scalarcsca 16664 ·𝑠 cvsca 16665 LModclmod 19746 ℂModcclm 23807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-nul 5171 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-sbc 3680 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-iota 6291 df-fv 6341 df-ov 7167 df-lmod 19748 df-clm 23808 |
This theorem is referenced by: clmnegsubdi2 23850 clmsub4 23851 ncvspi 23901 |
Copyright terms: Public domain | W3C validator |