![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clmvsdi | Structured version Visualization version GIF version |
Description: Distributive law for scalar product (left-distributivity). (lmodvsdi 20905 analog.) (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.) |
Ref | Expression |
---|---|
clmvscl.v | ⊢ 𝑉 = (Base‘𝑊) |
clmvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
clmvscl.s | ⊢ · = ( ·𝑠 ‘𝑊) |
clmvscl.k | ⊢ 𝐾 = (Base‘𝐹) |
clmvsdir.a | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
clmvsdi | ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmlmod 25119 | . 2 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
2 | clmvscl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | clmvsdir.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | clmvscl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | clmvscl.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | clmvscl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
7 | 2, 3, 4, 5, 6 | lmodvsdi 20905 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) |
8 | 1, 7 | sylan 579 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Scalarcsca 17314 ·𝑠 cvsca 17315 LModclmod 20880 ℂModcclm 25114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-lmod 20882 df-clm 25115 |
This theorem is referenced by: clmnegsubdi2 25157 clmsub4 25158 ncvspi 25209 |
Copyright terms: Public domain | W3C validator |