![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clmvsdir | Structured version Visualization version GIF version |
Description: Distributive law for scalar product (right-distributivity). (lmodvsdir 20786 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
clmvscl.v | ⊢ 𝑉 = (Base‘𝑊) |
clmvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
clmvscl.s | ⊢ · = ( ·𝑠 ‘𝑊) |
clmvscl.k | ⊢ 𝐾 = (Base‘𝐹) |
clmvsdir.a | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
clmvsdir | ⊢ ((𝑊 ∈ ℂMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 + 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmvscl.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | clmadd 25050 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → + = (+g‘𝐹)) |
3 | 2 | oveqd 7436 | . . . 4 ⊢ (𝑊 ∈ ℂMod → (𝑄 + 𝑅) = (𝑄(+g‘𝐹)𝑅)) |
4 | 3 | oveq1d 7434 | . . 3 ⊢ (𝑊 ∈ ℂMod → ((𝑄 + 𝑅) · 𝑋) = ((𝑄(+g‘𝐹)𝑅) · 𝑋)) |
5 | 4 | adantr 479 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 + 𝑅) · 𝑋) = ((𝑄(+g‘𝐹)𝑅) · 𝑋)) |
6 | clmlmod 25043 | . . 3 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
7 | clmvscl.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
8 | clmvsdir.a | . . . 4 ⊢ + = (+g‘𝑊) | |
9 | clmvscl.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
10 | clmvscl.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
11 | eqid 2725 | . . . 4 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
12 | 7, 8, 1, 9, 10, 11 | lmodvsdir 20786 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄(+g‘𝐹)𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
13 | 6, 12 | sylan 578 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄(+g‘𝐹)𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
14 | 5, 13 | eqtrd 2765 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 + 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 + caddc 11148 Basecbs 17188 +gcplusg 17241 Scalarcsca 17244 ·𝑠 cvsca 17245 LModclmod 20760 ℂModcclm 25038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-addf 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17189 df-ress 17218 df-plusg 17254 df-mulr 17255 df-starv 17256 df-tset 17260 df-ple 17261 df-ds 17263 df-unif 17264 df-lmod 20762 df-cnfld 21302 df-clm 25039 |
This theorem is referenced by: clmvs2 25070 clmmulg 25077 |
Copyright terms: Public domain | W3C validator |