| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmvs1 | Structured version Visualization version GIF version | ||
| Description: Scalar product with ring unity. (lmodvs1 20834 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| clmvs1.v | ⊢ 𝑉 = (Base‘𝑊) |
| clmvs1.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| Ref | Expression |
|---|---|
| clmvs1 | ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉) → (1 · 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | 1 | clm1 25011 | . . . 4 ⊢ (𝑊 ∈ ℂMod → 1 = (1r‘(Scalar‘𝑊))) |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉) → 1 = (1r‘(Scalar‘𝑊))) |
| 4 | 3 | oveq1d 7415 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉) → (1 · 𝑋) = ((1r‘(Scalar‘𝑊)) · 𝑋)) |
| 5 | clmlmod 25005 | . . 3 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
| 6 | clmvs1.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 7 | clmvs1.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 8 | eqid 2734 | . . . 4 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 9 | 6, 1, 7, 8 | lmodvs1 20834 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘(Scalar‘𝑊)) · 𝑋) = 𝑋) |
| 10 | 5, 9 | sylan 580 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉) → ((1r‘(Scalar‘𝑊)) · 𝑋) = 𝑋) |
| 11 | 4, 10 | eqtrd 2769 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉) → (1 · 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6528 (class class class)co 7400 1c1 11123 Basecbs 17215 Scalarcsca 17261 ·𝑠 cvsca 17262 1rcur 20128 LModclmod 20804 ℂModcclm 25000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-addf 11201 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-dec 12702 df-uz 12846 df-fz 13515 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-starv 17273 df-tset 17277 df-ple 17278 df-ds 17280 df-unif 17281 df-0g 17442 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-grp 18906 df-subg 19093 df-cmn 19750 df-mgp 20088 df-ur 20129 df-ring 20182 df-cring 20183 df-subrg 20517 df-lmod 20806 df-cnfld 21303 df-clm 25001 |
| This theorem is referenced by: clmvs2 25032 clmmulg 25039 clmnegneg 25042 cvsi 25068 cvsmuleqdivd 25072 cvsdiveqd 25073 ncvspi 25095 cphipval 25182 minveclem2 25365 ttgcontlem1 28798 |
| Copyright terms: Public domain | W3C validator |