Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clmsub4 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 5-Aug-2007.) (Revised by AV, 29-Sep-2021.) |
Ref | Expression |
---|---|
clmpm1dir.v | ⊢ 𝑉 = (Base‘𝑊) |
clmpm1dir.s | ⊢ · = ( ·𝑠 ‘𝑊) |
clmpm1dir.a | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
clmsub4 | ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝑊 ∈ ℂMod) | |
2 | eqid 2738 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | eqid 2738 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
4 | 2, 3 | clmneg1 23992 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → -1 ∈ (Base‘(Scalar‘𝑊))) |
5 | 4 | adantr 484 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → -1 ∈ (Base‘(Scalar‘𝑊))) |
6 | simpl 486 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → 𝐶 ∈ 𝑉) | |
7 | 6 | adantl 485 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐶 ∈ 𝑉) |
8 | simpr 488 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → 𝐷 ∈ 𝑉) | |
9 | 8 | adantl 485 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐷 ∈ 𝑉) |
10 | clmpm1dir.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
11 | clmpm1dir.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
12 | clmpm1dir.a | . . . . . 6 ⊢ + = (+g‘𝑊) | |
13 | 10, 2, 11, 3, 12 | clmvsdi 24002 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (-1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷))) |
14 | 1, 5, 7, 9, 13 | syl13anc 1374 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷))) |
15 | 14 | 3adant2 1133 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷))) |
16 | 15 | oveq2d 7238 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷)))) |
17 | clmabl 23979 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ Abel) | |
18 | ablcmn 19190 | . . . . 5 ⊢ (𝑊 ∈ Abel → 𝑊 ∈ CMnd) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ CMnd) |
20 | 19 | 3ad2ant1 1135 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝑊 ∈ CMnd) |
21 | simp2 1139 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | |
22 | simpl 486 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉) → 𝑊 ∈ ℂMod) | |
23 | 4 | adantr 484 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉) → -1 ∈ (Base‘(Scalar‘𝑊))) |
24 | simpr 488 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ 𝑉) | |
25 | 10, 2, 11, 3 | clmvscl 23998 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ -1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐶 ∈ 𝑉) → (-1 · 𝐶) ∈ 𝑉) |
26 | 22, 23, 24, 25 | syl3anc 1373 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉) → (-1 · 𝐶) ∈ 𝑉) |
27 | simpl 486 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉) → 𝑊 ∈ ℂMod) | |
28 | 4 | adantr 484 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉) → -1 ∈ (Base‘(Scalar‘𝑊))) |
29 | simpr 488 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉) → 𝐷 ∈ 𝑉) | |
30 | 10, 2, 11, 3 | clmvscl 23998 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ -1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐷 ∈ 𝑉) → (-1 · 𝐷) ∈ 𝑉) |
31 | 27, 28, 29, 30 | syl3anc 1373 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉) → (-1 · 𝐷) ∈ 𝑉) |
32 | 26, 31 | anim12dan 622 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((-1 · 𝐶) ∈ 𝑉 ∧ (-1 · 𝐷) ∈ 𝑉)) |
33 | 32 | 3adant2 1133 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((-1 · 𝐶) ∈ 𝑉 ∧ (-1 · 𝐷) ∈ 𝑉)) |
34 | 10, 12 | cmn4 19203 | . . 3 ⊢ ((𝑊 ∈ CMnd ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ((-1 · 𝐶) ∈ 𝑉 ∧ (-1 · 𝐷) ∈ 𝑉)) → ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) |
35 | 20, 21, 33, 34 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) |
36 | 16, 35 | eqtrd 2778 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ‘cfv 6389 (class class class)co 7222 1c1 10743 -cneg 11076 Basecbs 16773 +gcplusg 16815 Scalarcsca 16818 ·𝑠 cvsca 16819 CMndccmn 19183 Abelcabl 19184 ℂModcclm 23972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-cnex 10798 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-pre-mulgt0 10819 ax-addf 10821 ax-mulf 10822 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-pss 3894 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-tp 4555 df-op 4557 df-uni 4829 df-iun 4915 df-br 5063 df-opab 5125 df-mpt 5145 df-tr 5171 df-id 5464 df-eprel 5469 df-po 5477 df-so 5478 df-fr 5518 df-we 5520 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-pred 6169 df-ord 6225 df-on 6226 df-lim 6227 df-suc 6228 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-om 7654 df-1st 7770 df-2nd 7771 df-wrecs 8056 df-recs 8117 df-rdg 8155 df-1o 8211 df-er 8400 df-en 8636 df-dom 8637 df-sdom 8638 df-fin 8639 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-sub 11077 df-neg 11078 df-nn 11844 df-2 11906 df-3 11907 df-4 11908 df-5 11909 df-6 11910 df-7 11911 df-8 11912 df-9 11913 df-n0 12104 df-z 12190 df-dec 12307 df-uz 12452 df-fz 13109 df-seq 13588 df-struct 16713 df-sets 16730 df-slot 16748 df-ndx 16758 df-base 16774 df-ress 16798 df-plusg 16828 df-mulr 16829 df-starv 16830 df-tset 16834 df-ple 16835 df-ds 16837 df-unif 16838 df-0g 16959 df-mgm 18127 df-sgrp 18176 df-mnd 18187 df-grp 18381 df-minusg 18382 df-mulg 18502 df-subg 18553 df-cmn 19185 df-abl 19186 df-mgp 19518 df-ur 19530 df-ring 19577 df-cring 19578 df-subrg 19811 df-lmod 19914 df-cnfld 20377 df-clm 23973 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |