![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clmsub4 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 5-Aug-2007.) (Revised by AV, 29-Sep-2021.) |
Ref | Expression |
---|---|
clmpm1dir.v | ⊢ 𝑉 = (Base‘𝑊) |
clmpm1dir.s | ⊢ · = ( ·𝑠 ‘𝑊) |
clmpm1dir.a | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
clmsub4 | ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 476 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝑊 ∈ ℂMod) | |
2 | eqid 2826 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | eqid 2826 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
4 | 2, 3 | clmneg1 23252 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → -1 ∈ (Base‘(Scalar‘𝑊))) |
5 | 4 | adantr 474 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → -1 ∈ (Base‘(Scalar‘𝑊))) |
6 | simpl 476 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → 𝐶 ∈ 𝑉) | |
7 | 6 | adantl 475 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐶 ∈ 𝑉) |
8 | simpr 479 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → 𝐷 ∈ 𝑉) | |
9 | 8 | adantl 475 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐷 ∈ 𝑉) |
10 | clmpm1dir.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
11 | clmpm1dir.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
12 | clmpm1dir.a | . . . . . 6 ⊢ + = (+g‘𝑊) | |
13 | 10, 2, 11, 3, 12 | clmvsdi 23262 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (-1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷))) |
14 | 1, 5, 7, 9, 13 | syl13anc 1497 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷))) |
15 | 14 | 3adant2 1167 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷))) |
16 | 15 | oveq2d 6922 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷)))) |
17 | clmabl 23239 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ Abel) | |
18 | ablcmn 18553 | . . . . 5 ⊢ (𝑊 ∈ Abel → 𝑊 ∈ CMnd) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ CMnd) |
20 | 19 | 3ad2ant1 1169 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝑊 ∈ CMnd) |
21 | simp2 1173 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | |
22 | simpl 476 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉) → 𝑊 ∈ ℂMod) | |
23 | 4 | adantr 474 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉) → -1 ∈ (Base‘(Scalar‘𝑊))) |
24 | simpr 479 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ 𝑉) | |
25 | 10, 2, 11, 3 | clmvscl 23258 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ -1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐶 ∈ 𝑉) → (-1 · 𝐶) ∈ 𝑉) |
26 | 22, 23, 24, 25 | syl3anc 1496 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉) → (-1 · 𝐶) ∈ 𝑉) |
27 | simpl 476 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉) → 𝑊 ∈ ℂMod) | |
28 | 4 | adantr 474 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉) → -1 ∈ (Base‘(Scalar‘𝑊))) |
29 | simpr 479 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉) → 𝐷 ∈ 𝑉) | |
30 | 10, 2, 11, 3 | clmvscl 23258 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ -1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐷 ∈ 𝑉) → (-1 · 𝐷) ∈ 𝑉) |
31 | 27, 28, 29, 30 | syl3anc 1496 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉) → (-1 · 𝐷) ∈ 𝑉) |
32 | 26, 31 | anim12dan 614 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((-1 · 𝐶) ∈ 𝑉 ∧ (-1 · 𝐷) ∈ 𝑉)) |
33 | 32 | 3adant2 1167 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((-1 · 𝐶) ∈ 𝑉 ∧ (-1 · 𝐷) ∈ 𝑉)) |
34 | 10, 12 | cmn4 18566 | . . 3 ⊢ ((𝑊 ∈ CMnd ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ((-1 · 𝐶) ∈ 𝑉 ∧ (-1 · 𝐷) ∈ 𝑉)) → ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) |
35 | 20, 21, 33, 34 | syl3anc 1496 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) |
36 | 16, 35 | eqtrd 2862 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ‘cfv 6124 (class class class)co 6906 1c1 10254 -cneg 10587 Basecbs 16223 +gcplusg 16306 Scalarcsca 16309 ·𝑠 cvsca 16310 CMndccmn 18547 Abelcabl 18548 ℂModcclm 23232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-inf2 8816 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-addf 10332 ax-mulf 10333 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-3 11416 df-4 11417 df-5 11418 df-6 11419 df-7 11420 df-8 11421 df-9 11422 df-n0 11620 df-z 11706 df-dec 11823 df-uz 11970 df-fz 12621 df-seq 13097 df-struct 16225 df-ndx 16226 df-slot 16227 df-base 16229 df-sets 16230 df-ress 16231 df-plusg 16319 df-mulr 16320 df-starv 16321 df-tset 16325 df-ple 16326 df-ds 16328 df-unif 16329 df-0g 16456 df-mgm 17596 df-sgrp 17638 df-mnd 17649 df-grp 17780 df-minusg 17781 df-mulg 17896 df-subg 17943 df-cmn 18549 df-abl 18550 df-mgp 18845 df-ur 18857 df-ring 18904 df-cring 18905 df-subrg 19135 df-lmod 19222 df-cnfld 20108 df-clm 23233 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |