| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmsub4 | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 5-Aug-2007.) (Revised by AV, 29-Sep-2021.) |
| Ref | Expression |
|---|---|
| clmpm1dir.v | ⊢ 𝑉 = (Base‘𝑊) |
| clmpm1dir.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| clmpm1dir.a | ⊢ + = (+g‘𝑊) |
| Ref | Expression |
|---|---|
| clmsub4 | ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝑊 ∈ ℂMod) | |
| 2 | eqid 2731 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 3 | eqid 2731 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 4 | 2, 3 | clmneg1 25007 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → -1 ∈ (Base‘(Scalar‘𝑊))) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → -1 ∈ (Base‘(Scalar‘𝑊))) |
| 6 | simpl 482 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → 𝐶 ∈ 𝑉) | |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐶 ∈ 𝑉) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → 𝐷 ∈ 𝑉) | |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐷 ∈ 𝑉) |
| 10 | clmpm1dir.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 11 | clmpm1dir.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 12 | clmpm1dir.a | . . . . . 6 ⊢ + = (+g‘𝑊) | |
| 13 | 10, 2, 11, 3, 12 | clmvsdi 25017 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (-1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷))) |
| 14 | 1, 5, 7, 9, 13 | syl13anc 1374 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷))) |
| 15 | 14 | 3adant2 1131 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷))) |
| 16 | 15 | oveq2d 7362 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷)))) |
| 17 | clmabl 24994 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ Abel) | |
| 18 | ablcmn 19697 | . . . . 5 ⊢ (𝑊 ∈ Abel → 𝑊 ∈ CMnd) | |
| 19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ CMnd) |
| 20 | 19 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝑊 ∈ CMnd) |
| 21 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | |
| 22 | simpl 482 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉) → 𝑊 ∈ ℂMod) | |
| 23 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉) → -1 ∈ (Base‘(Scalar‘𝑊))) |
| 24 | simpr 484 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ 𝑉) | |
| 25 | 10, 2, 11, 3 | clmvscl 25013 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ -1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐶 ∈ 𝑉) → (-1 · 𝐶) ∈ 𝑉) |
| 26 | 22, 23, 24, 25 | syl3anc 1373 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉) → (-1 · 𝐶) ∈ 𝑉) |
| 27 | simpl 482 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉) → 𝑊 ∈ ℂMod) | |
| 28 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉) → -1 ∈ (Base‘(Scalar‘𝑊))) |
| 29 | simpr 484 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉) → 𝐷 ∈ 𝑉) | |
| 30 | 10, 2, 11, 3 | clmvscl 25013 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ -1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐷 ∈ 𝑉) → (-1 · 𝐷) ∈ 𝑉) |
| 31 | 27, 28, 29, 30 | syl3anc 1373 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉) → (-1 · 𝐷) ∈ 𝑉) |
| 32 | 26, 31 | anim12dan 619 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((-1 · 𝐶) ∈ 𝑉 ∧ (-1 · 𝐷) ∈ 𝑉)) |
| 33 | 32 | 3adant2 1131 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((-1 · 𝐶) ∈ 𝑉 ∧ (-1 · 𝐷) ∈ 𝑉)) |
| 34 | 10, 12 | cmn4 19711 | . . 3 ⊢ ((𝑊 ∈ CMnd ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ((-1 · 𝐶) ∈ 𝑉 ∧ (-1 · 𝐷) ∈ 𝑉)) → ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) |
| 35 | 20, 21, 33, 34 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) |
| 36 | 16, 35 | eqtrd 2766 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 1c1 11004 -cneg 11342 Basecbs 17117 +gcplusg 17158 Scalarcsca 17161 ·𝑠 cvsca 17162 CMndccmn 19690 Abelcabl 19691 ℂModcclm 24987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-seq 13906 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-mulg 18978 df-subg 19033 df-cmn 19692 df-abl 19693 df-mgp 20057 df-ur 20098 df-ring 20151 df-cring 20152 df-subrg 20483 df-lmod 20793 df-cnfld 21290 df-clm 24988 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |