![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clmsub4 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 5-Aug-2007.) (Revised by AV, 29-Sep-2021.) |
Ref | Expression |
---|---|
clmpm1dir.v | ⊢ 𝑉 = (Base‘𝑊) |
clmpm1dir.s | ⊢ · = ( ·𝑠 ‘𝑊) |
clmpm1dir.a | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
clmsub4 | ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝑊 ∈ ℂMod) | |
2 | eqid 2740 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | eqid 2740 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
4 | 2, 3 | clmneg1 25134 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → -1 ∈ (Base‘(Scalar‘𝑊))) |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → -1 ∈ (Base‘(Scalar‘𝑊))) |
6 | simpl 482 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → 𝐶 ∈ 𝑉) | |
7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐶 ∈ 𝑉) |
8 | simpr 484 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → 𝐷 ∈ 𝑉) | |
9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐷 ∈ 𝑉) |
10 | clmpm1dir.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
11 | clmpm1dir.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
12 | clmpm1dir.a | . . . . . 6 ⊢ + = (+g‘𝑊) | |
13 | 10, 2, 11, 3, 12 | clmvsdi 25144 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ (-1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷))) |
14 | 1, 5, 7, 9, 13 | syl13anc 1372 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷))) |
15 | 14 | 3adant2 1131 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷))) |
16 | 15 | oveq2d 7464 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷)))) |
17 | clmabl 25121 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ Abel) | |
18 | ablcmn 19829 | . . . . 5 ⊢ (𝑊 ∈ Abel → 𝑊 ∈ CMnd) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ CMnd) |
20 | 19 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝑊 ∈ CMnd) |
21 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | |
22 | simpl 482 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉) → 𝑊 ∈ ℂMod) | |
23 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉) → -1 ∈ (Base‘(Scalar‘𝑊))) |
24 | simpr 484 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ 𝑉) | |
25 | 10, 2, 11, 3 | clmvscl 25140 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ -1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐶 ∈ 𝑉) → (-1 · 𝐶) ∈ 𝑉) |
26 | 22, 23, 24, 25 | syl3anc 1371 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉) → (-1 · 𝐶) ∈ 𝑉) |
27 | simpl 482 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉) → 𝑊 ∈ ℂMod) | |
28 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉) → -1 ∈ (Base‘(Scalar‘𝑊))) |
29 | simpr 484 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉) → 𝐷 ∈ 𝑉) | |
30 | 10, 2, 11, 3 | clmvscl 25140 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ -1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐷 ∈ 𝑉) → (-1 · 𝐷) ∈ 𝑉) |
31 | 27, 28, 29, 30 | syl3anc 1371 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉) → (-1 · 𝐷) ∈ 𝑉) |
32 | 26, 31 | anim12dan 618 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((-1 · 𝐶) ∈ 𝑉 ∧ (-1 · 𝐷) ∈ 𝑉)) |
33 | 32 | 3adant2 1131 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((-1 · 𝐶) ∈ 𝑉 ∧ (-1 · 𝐷) ∈ 𝑉)) |
34 | 10, 12 | cmn4 19843 | . . 3 ⊢ ((𝑊 ∈ CMnd ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ((-1 · 𝐶) ∈ 𝑉 ∧ (-1 · 𝐷) ∈ 𝑉)) → ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) |
35 | 20, 21, 33, 34 | syl3anc 1371 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) |
36 | 16, 35 | eqtrd 2780 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 1c1 11185 -cneg 11521 Basecbs 17258 +gcplusg 17311 Scalarcsca 17314 ·𝑠 cvsca 17315 CMndccmn 19822 Abelcabl 19823 ℂModcclm 25114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-seq 14053 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-mulg 19108 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-ur 20209 df-ring 20262 df-cring 20263 df-subrg 20597 df-lmod 20882 df-cnfld 21388 df-clm 25115 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |