MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnveq0 Structured version   Visualization version   GIF version

Theorem cnveq0 6170
Description: A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
cnveq0 (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))

Proof of Theorem cnveq0
StepHypRef Expression
1 cnv0 6113 . 2 ∅ = ∅
2 rel0 5762 . . . . 5 Rel ∅
3 cnveqb 6169 . . . . 5 ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ 𝐴 = ∅))
42, 3mpan2 691 . . . 4 (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))
5 eqeq2 2741 . . . . 5 (∅ = ∅ → (𝐴 = ∅ ↔ 𝐴 = ∅))
65bibi2d 342 . . . 4 (∅ = ∅ → ((𝐴 = ∅ ↔ 𝐴 = ∅) ↔ (𝐴 = ∅ ↔ 𝐴 = ∅)))
74, 6imbitrrid 246 . . 3 (∅ = ∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅)))
87eqcoms 2737 . 2 (∅ = ∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅)))
91, 8ax-mp 5 1 (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  c0 4296  ccnv 5637  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646
This theorem is referenced by:  elrn3  35749
  Copyright terms: Public domain W3C validator