![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnveq0 | Structured version Visualization version GIF version |
Description: A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
cnveq0 | ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnv0 6163 | . 2 ⊢ ◡∅ = ∅ | |
2 | rel0 5812 | . . . . 5 ⊢ Rel ∅ | |
3 | cnveqb 6218 | . . . . 5 ⊢ ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ ◡𝐴 = ◡∅)) | |
4 | 2, 3 | mpan2 691 | . . . 4 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ◡∅)) |
5 | eqeq2 2747 | . . . . 5 ⊢ (∅ = ◡∅ → (◡𝐴 = ∅ ↔ ◡𝐴 = ◡∅)) | |
6 | 5 | bibi2d 342 | . . . 4 ⊢ (∅ = ◡∅ → ((𝐴 = ∅ ↔ ◡𝐴 = ∅) ↔ (𝐴 = ∅ ↔ ◡𝐴 = ◡∅))) |
7 | 4, 6 | imbitrrid 246 | . . 3 ⊢ (∅ = ◡∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅))) |
8 | 7 | eqcoms 2743 | . 2 ⊢ (◡∅ = ∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅))) |
9 | 1, 8 | ax-mp 5 | 1 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∅c0 4339 ◡ccnv 5688 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 |
This theorem is referenced by: elrn3 35742 |
Copyright terms: Public domain | W3C validator |