![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnveq0 | Structured version Visualization version GIF version |
Description: A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
cnveq0 | ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnv0 5792 | . 2 ⊢ ◡∅ = ∅ | |
2 | rel0 5472 | . . . . 5 ⊢ Rel ∅ | |
3 | cnveqb 5845 | . . . . 5 ⊢ ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ ◡𝐴 = ◡∅)) | |
4 | 2, 3 | mpan2 681 | . . . 4 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ◡∅)) |
5 | eqeq2 2789 | . . . . 5 ⊢ (∅ = ◡∅ → (◡𝐴 = ∅ ↔ ◡𝐴 = ◡∅)) | |
6 | 5 | bibi2d 334 | . . . 4 ⊢ (∅ = ◡∅ → ((𝐴 = ∅ ↔ ◡𝐴 = ∅) ↔ (𝐴 = ∅ ↔ ◡𝐴 = ◡∅))) |
7 | 4, 6 | syl5ibr 238 | . . 3 ⊢ (∅ = ◡∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅))) |
8 | 7 | eqcoms 2786 | . 2 ⊢ (◡∅ = ∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅))) |
9 | 1, 8 | ax-mp 5 | 1 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1601 ∅c0 4141 ◡ccnv 5356 Rel wrel 5362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4889 df-opab 4951 df-xp 5363 df-rel 5364 df-cnv 5365 |
This theorem is referenced by: elrn3 32254 |
Copyright terms: Public domain | W3C validator |