![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnveq0 | Structured version Visualization version GIF version |
Description: A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
cnveq0 | ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnv0 6133 | . 2 ⊢ ◡∅ = ∅ | |
2 | rel0 5792 | . . . . 5 ⊢ Rel ∅ | |
3 | cnveqb 6188 | . . . . 5 ⊢ ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ ◡𝐴 = ◡∅)) | |
4 | 2, 3 | mpan2 688 | . . . 4 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ◡∅)) |
5 | eqeq2 2738 | . . . . 5 ⊢ (∅ = ◡∅ → (◡𝐴 = ∅ ↔ ◡𝐴 = ◡∅)) | |
6 | 5 | bibi2d 342 | . . . 4 ⊢ (∅ = ◡∅ → ((𝐴 = ∅ ↔ ◡𝐴 = ∅) ↔ (𝐴 = ∅ ↔ ◡𝐴 = ◡∅))) |
7 | 4, 6 | imbitrrid 245 | . . 3 ⊢ (∅ = ◡∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅))) |
8 | 7 | eqcoms 2734 | . 2 ⊢ (◡∅ = ∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅))) |
9 | 1, 8 | ax-mp 5 | 1 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∅c0 4317 ◡ccnv 5668 Rel wrel 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-cnv 5677 |
This theorem is referenced by: elrn3 35265 |
Copyright terms: Public domain | W3C validator |