MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnveq0 Structured version   Visualization version   GIF version

Theorem cnveq0 6089
Description: A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
cnveq0 (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))

Proof of Theorem cnveq0
StepHypRef Expression
1 cnv0 6033 . 2 ∅ = ∅
2 rel0 5698 . . . . 5 Rel ∅
3 cnveqb 6088 . . . . 5 ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ 𝐴 = ∅))
42, 3mpan2 687 . . . 4 (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))
5 eqeq2 2750 . . . . 5 (∅ = ∅ → (𝐴 = ∅ ↔ 𝐴 = ∅))
65bibi2d 342 . . . 4 (∅ = ∅ → ((𝐴 = ∅ ↔ 𝐴 = ∅) ↔ (𝐴 = ∅ ↔ 𝐴 = ∅)))
74, 6syl5ibr 245 . . 3 (∅ = ∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅)))
87eqcoms 2746 . 2 (∅ = ∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅)))
91, 8ax-mp 5 1 (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  c0 4253  ccnv 5579  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588
This theorem is referenced by:  elrn3  33635
  Copyright terms: Public domain W3C validator