MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnveq0 Structured version   Visualization version   GIF version

Theorem cnveq0 6189
Description: A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
cnveq0 (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))

Proof of Theorem cnveq0
StepHypRef Expression
1 cnv0 6133 . 2 ∅ = ∅
2 rel0 5792 . . . . 5 Rel ∅
3 cnveqb 6188 . . . . 5 ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ 𝐴 = ∅))
42, 3mpan2 688 . . . 4 (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))
5 eqeq2 2738 . . . . 5 (∅ = ∅ → (𝐴 = ∅ ↔ 𝐴 = ∅))
65bibi2d 342 . . . 4 (∅ = ∅ → ((𝐴 = ∅ ↔ 𝐴 = ∅) ↔ (𝐴 = ∅ ↔ 𝐴 = ∅)))
74, 6imbitrrid 245 . . 3 (∅ = ∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅)))
87eqcoms 2734 . 2 (∅ = ∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅)))
91, 8ax-mp 5 1 (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  c0 4317  ccnv 5668  Rel wrel 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-xp 5675  df-rel 5676  df-cnv 5677
This theorem is referenced by:  elrn3  35265
  Copyright terms: Public domain W3C validator