![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnveqb | Structured version Visualization version GIF version |
Description: Equality theorem for converse. (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
cnveqb | ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ◡𝐴 = ◡𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 5635 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
2 | dfrel2 5927 | . . . 4 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
3 | dfrel2 5927 | . . . . . . 7 ⊢ (Rel 𝐵 ↔ ◡◡𝐵 = 𝐵) | |
4 | cnveq 5635 | . . . . . . . . 9 ⊢ (◡𝐴 = ◡𝐵 → ◡◡𝐴 = ◡◡𝐵) | |
5 | eqeq2 2806 | . . . . . . . . 9 ⊢ (𝐵 = ◡◡𝐵 → (◡◡𝐴 = 𝐵 ↔ ◡◡𝐴 = ◡◡𝐵)) | |
6 | 4, 5 | syl5ibr 247 | . . . . . . . 8 ⊢ (𝐵 = ◡◡𝐵 → (◡𝐴 = ◡𝐵 → ◡◡𝐴 = 𝐵)) |
7 | 6 | eqcoms 2803 | . . . . . . 7 ⊢ (◡◡𝐵 = 𝐵 → (◡𝐴 = ◡𝐵 → ◡◡𝐴 = 𝐵)) |
8 | 3, 7 | sylbi 218 | . . . . . 6 ⊢ (Rel 𝐵 → (◡𝐴 = ◡𝐵 → ◡◡𝐴 = 𝐵)) |
9 | eqeq1 2799 | . . . . . . 7 ⊢ (𝐴 = ◡◡𝐴 → (𝐴 = 𝐵 ↔ ◡◡𝐴 = 𝐵)) | |
10 | 9 | imbi2d 342 | . . . . . 6 ⊢ (𝐴 = ◡◡𝐴 → ((◡𝐴 = ◡𝐵 → 𝐴 = 𝐵) ↔ (◡𝐴 = ◡𝐵 → ◡◡𝐴 = 𝐵))) |
11 | 8, 10 | syl5ibr 247 | . . . . 5 ⊢ (𝐴 = ◡◡𝐴 → (Rel 𝐵 → (◡𝐴 = ◡𝐵 → 𝐴 = 𝐵))) |
12 | 11 | eqcoms 2803 | . . . 4 ⊢ (◡◡𝐴 = 𝐴 → (Rel 𝐵 → (◡𝐴 = ◡𝐵 → 𝐴 = 𝐵))) |
13 | 2, 12 | sylbi 218 | . . 3 ⊢ (Rel 𝐴 → (Rel 𝐵 → (◡𝐴 = ◡𝐵 → 𝐴 = 𝐵))) |
14 | 13 | imp 407 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (◡𝐴 = ◡𝐵 → 𝐴 = 𝐵)) |
15 | 1, 14 | impbid2 227 | 1 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ◡𝐴 = ◡𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ◡ccnv 5447 Rel wrel 5453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pr 5226 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-rab 3114 df-v 3439 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-nul 4216 df-if 4386 df-sn 4477 df-pr 4479 df-op 4483 df-br 4967 df-opab 5029 df-xp 5454 df-rel 5455 df-cnv 5456 |
This theorem is referenced by: cnveq0 5934 weisoeq2 6977 relexpaddg 14251 relexpaddss 39573 |
Copyright terms: Public domain | W3C validator |