| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnveqb | Structured version Visualization version GIF version | ||
| Description: Equality theorem for converse. (Contributed by FL, 19-Sep-2011.) |
| Ref | Expression |
|---|---|
| cnveqb | ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ◡𝐴 = ◡𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq 5812 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 2 | dfrel2 6136 | . . . 4 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
| 3 | dfrel2 6136 | . . . . . . 7 ⊢ (Rel 𝐵 ↔ ◡◡𝐵 = 𝐵) | |
| 4 | cnveq 5812 | . . . . . . . . 9 ⊢ (◡𝐴 = ◡𝐵 → ◡◡𝐴 = ◡◡𝐵) | |
| 5 | eqeq2 2743 | . . . . . . . . 9 ⊢ (𝐵 = ◡◡𝐵 → (◡◡𝐴 = 𝐵 ↔ ◡◡𝐴 = ◡◡𝐵)) | |
| 6 | 4, 5 | imbitrrid 246 | . . . . . . . 8 ⊢ (𝐵 = ◡◡𝐵 → (◡𝐴 = ◡𝐵 → ◡◡𝐴 = 𝐵)) |
| 7 | 6 | eqcoms 2739 | . . . . . . 7 ⊢ (◡◡𝐵 = 𝐵 → (◡𝐴 = ◡𝐵 → ◡◡𝐴 = 𝐵)) |
| 8 | 3, 7 | sylbi 217 | . . . . . 6 ⊢ (Rel 𝐵 → (◡𝐴 = ◡𝐵 → ◡◡𝐴 = 𝐵)) |
| 9 | eqeq1 2735 | . . . . . . 7 ⊢ (𝐴 = ◡◡𝐴 → (𝐴 = 𝐵 ↔ ◡◡𝐴 = 𝐵)) | |
| 10 | 9 | imbi2d 340 | . . . . . 6 ⊢ (𝐴 = ◡◡𝐴 → ((◡𝐴 = ◡𝐵 → 𝐴 = 𝐵) ↔ (◡𝐴 = ◡𝐵 → ◡◡𝐴 = 𝐵))) |
| 11 | 8, 10 | imbitrrid 246 | . . . . 5 ⊢ (𝐴 = ◡◡𝐴 → (Rel 𝐵 → (◡𝐴 = ◡𝐵 → 𝐴 = 𝐵))) |
| 12 | 11 | eqcoms 2739 | . . . 4 ⊢ (◡◡𝐴 = 𝐴 → (Rel 𝐵 → (◡𝐴 = ◡𝐵 → 𝐴 = 𝐵))) |
| 13 | 2, 12 | sylbi 217 | . . 3 ⊢ (Rel 𝐴 → (Rel 𝐵 → (◡𝐴 = ◡𝐵 → 𝐴 = 𝐵))) |
| 14 | 13 | imp 406 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (◡𝐴 = ◡𝐵 → 𝐴 = 𝐵)) |
| 15 | 1, 14 | impbid2 226 | 1 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ◡𝐴 = ◡𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ◡ccnv 5613 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 |
| This theorem is referenced by: cnveq0 6144 weisoeq2 7290 relexpaddg 14960 relexpaddss 43810 |
| Copyright terms: Public domain | W3C validator |