|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cnveqb | Structured version Visualization version GIF version | ||
| Description: Equality theorem for converse. (Contributed by FL, 19-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| cnveqb | ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ◡𝐴 = ◡𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnveq 5884 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 2 | dfrel2 6209 | . . . 4 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
| 3 | dfrel2 6209 | . . . . . . 7 ⊢ (Rel 𝐵 ↔ ◡◡𝐵 = 𝐵) | |
| 4 | cnveq 5884 | . . . . . . . . 9 ⊢ (◡𝐴 = ◡𝐵 → ◡◡𝐴 = ◡◡𝐵) | |
| 5 | eqeq2 2749 | . . . . . . . . 9 ⊢ (𝐵 = ◡◡𝐵 → (◡◡𝐴 = 𝐵 ↔ ◡◡𝐴 = ◡◡𝐵)) | |
| 6 | 4, 5 | imbitrrid 246 | . . . . . . . 8 ⊢ (𝐵 = ◡◡𝐵 → (◡𝐴 = ◡𝐵 → ◡◡𝐴 = 𝐵)) | 
| 7 | 6 | eqcoms 2745 | . . . . . . 7 ⊢ (◡◡𝐵 = 𝐵 → (◡𝐴 = ◡𝐵 → ◡◡𝐴 = 𝐵)) | 
| 8 | 3, 7 | sylbi 217 | . . . . . 6 ⊢ (Rel 𝐵 → (◡𝐴 = ◡𝐵 → ◡◡𝐴 = 𝐵)) | 
| 9 | eqeq1 2741 | . . . . . . 7 ⊢ (𝐴 = ◡◡𝐴 → (𝐴 = 𝐵 ↔ ◡◡𝐴 = 𝐵)) | |
| 10 | 9 | imbi2d 340 | . . . . . 6 ⊢ (𝐴 = ◡◡𝐴 → ((◡𝐴 = ◡𝐵 → 𝐴 = 𝐵) ↔ (◡𝐴 = ◡𝐵 → ◡◡𝐴 = 𝐵))) | 
| 11 | 8, 10 | imbitrrid 246 | . . . . 5 ⊢ (𝐴 = ◡◡𝐴 → (Rel 𝐵 → (◡𝐴 = ◡𝐵 → 𝐴 = 𝐵))) | 
| 12 | 11 | eqcoms 2745 | . . . 4 ⊢ (◡◡𝐴 = 𝐴 → (Rel 𝐵 → (◡𝐴 = ◡𝐵 → 𝐴 = 𝐵))) | 
| 13 | 2, 12 | sylbi 217 | . . 3 ⊢ (Rel 𝐴 → (Rel 𝐵 → (◡𝐴 = ◡𝐵 → 𝐴 = 𝐵))) | 
| 14 | 13 | imp 406 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (◡𝐴 = ◡𝐵 → 𝐴 = 𝐵)) | 
| 15 | 1, 14 | impbid2 226 | 1 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ◡𝐴 = ◡𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ◡ccnv 5684 Rel wrel 5690 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 | 
| This theorem is referenced by: cnveq0 6217 weisoeq2 7376 relexpaddg 15092 relexpaddss 43731 | 
| Copyright terms: Public domain | W3C validator |