MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnveqb Structured version   Visualization version   GIF version

Theorem cnveqb 6190
Description: Equality theorem for converse. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
cnveqb ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵𝐴 = 𝐵))

Proof of Theorem cnveqb
StepHypRef Expression
1 cnveq 5858 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
2 dfrel2 6183 . . . 4 (Rel 𝐴𝐴 = 𝐴)
3 dfrel2 6183 . . . . . . 7 (Rel 𝐵𝐵 = 𝐵)
4 cnveq 5858 . . . . . . . . 9 (𝐴 = 𝐵𝐴 = 𝐵)
5 eqeq2 2748 . . . . . . . . 9 (𝐵 = 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵))
64, 5imbitrrid 246 . . . . . . . 8 (𝐵 = 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵))
76eqcoms 2744 . . . . . . 7 (𝐵 = 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵))
83, 7sylbi 217 . . . . . 6 (Rel 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵))
9 eqeq1 2740 . . . . . . 7 (𝐴 = 𝐴 → (𝐴 = 𝐵𝐴 = 𝐵))
109imbi2d 340 . . . . . 6 (𝐴 = 𝐴 → ((𝐴 = 𝐵𝐴 = 𝐵) ↔ (𝐴 = 𝐵𝐴 = 𝐵)))
118, 10imbitrrid 246 . . . . 5 (𝐴 = 𝐴 → (Rel 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵)))
1211eqcoms 2744 . . . 4 (𝐴 = 𝐴 → (Rel 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵)))
132, 12sylbi 217 . . 3 (Rel 𝐴 → (Rel 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵)))
1413imp 406 . 2 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵𝐴 = 𝐵))
151, 14impbid2 226 1 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  ccnv 5658  Rel wrel 5664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667
This theorem is referenced by:  cnveq0  6191  weisoeq2  7354  relexpaddg  15077  relexpaddss  43709
  Copyright terms: Public domain W3C validator