MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnveqb Structured version   Visualization version   GIF version

Theorem cnveqb 6148
Description: Equality theorem for converse. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
cnveqb ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵𝐴 = 𝐵))

Proof of Theorem cnveqb
StepHypRef Expression
1 cnveq 5829 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
2 dfrel2 6141 . . . 4 (Rel 𝐴𝐴 = 𝐴)
3 dfrel2 6141 . . . . . . 7 (Rel 𝐵𝐵 = 𝐵)
4 cnveq 5829 . . . . . . . . 9 (𝐴 = 𝐵𝐴 = 𝐵)
5 eqeq2 2748 . . . . . . . . 9 (𝐵 = 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵))
64, 5syl5ibr 245 . . . . . . . 8 (𝐵 = 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵))
76eqcoms 2744 . . . . . . 7 (𝐵 = 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵))
83, 7sylbi 216 . . . . . 6 (Rel 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵))
9 eqeq1 2740 . . . . . . 7 (𝐴 = 𝐴 → (𝐴 = 𝐵𝐴 = 𝐵))
109imbi2d 340 . . . . . 6 (𝐴 = 𝐴 → ((𝐴 = 𝐵𝐴 = 𝐵) ↔ (𝐴 = 𝐵𝐴 = 𝐵)))
118, 10syl5ibr 245 . . . . 5 (𝐴 = 𝐴 → (Rel 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵)))
1211eqcoms 2744 . . . 4 (𝐴 = 𝐴 → (Rel 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵)))
132, 12sylbi 216 . . 3 (Rel 𝐴 → (Rel 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵)))
1413imp 407 . 2 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵𝐴 = 𝐵))
151, 14impbid2 225 1 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  ccnv 5632  Rel wrel 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-br 5106  df-opab 5168  df-xp 5639  df-rel 5640  df-cnv 5641
This theorem is referenced by:  cnveq0  6149  weisoeq2  7301  relexpaddg  14938  relexpaddss  41980
  Copyright terms: Public domain W3C validator