| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrel3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of relation. (Contributed by NM, 14-May-2008.) |
| Ref | Expression |
|---|---|
| dfrel3 | ⊢ (Rel 𝑅 ↔ (𝑅 ↾ V) = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel2 6165 | . 2 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
| 2 | cnvcnv2 6169 | . . 3 ⊢ ◡◡𝑅 = (𝑅 ↾ V) | |
| 3 | 2 | eqeq1i 2735 | . 2 ⊢ (◡◡𝑅 = 𝑅 ↔ (𝑅 ↾ V) = 𝑅) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (Rel 𝑅 ↔ (𝑅 ↾ V) = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Vcvv 3450 ◡ccnv 5640 ↾ cres 5643 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-res 5653 |
| This theorem is referenced by: elid 6175 cocnvcnv2 6234 f1ovi 6842 ttrclco 9678 |
| Copyright terms: Public domain | W3C validator |