| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrel3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of relation. (Contributed by NM, 14-May-2008.) |
| Ref | Expression |
|---|---|
| dfrel3 | ⊢ (Rel 𝑅 ↔ (𝑅 ↾ V) = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel2 6136 | . 2 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
| 2 | cnvcnv2 6140 | . . 3 ⊢ ◡◡𝑅 = (𝑅 ↾ V) | |
| 3 | 2 | eqeq1i 2736 | . 2 ⊢ (◡◡𝑅 = 𝑅 ↔ (𝑅 ↾ V) = 𝑅) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (Rel 𝑅 ↔ (𝑅 ↾ V) = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Vcvv 3436 ◡ccnv 5615 ↾ cres 5618 Rel wrel 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-res 5628 |
| This theorem is referenced by: elid 6146 cocnvcnv2 6206 f1ovi 6802 ttrclco 9608 |
| Copyright terms: Public domain | W3C validator |