MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrel3 Structured version   Visualization version   GIF version

Theorem dfrel3 6229
Description: Alternate definition of relation. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
dfrel3 (Rel 𝑅 ↔ (𝑅 ↾ V) = 𝑅)

Proof of Theorem dfrel3
StepHypRef Expression
1 dfrel2 6220 . 2 (Rel 𝑅𝑅 = 𝑅)
2 cnvcnv2 6224 . . 3 𝑅 = (𝑅 ↾ V)
32eqeq1i 2745 . 2 (𝑅 = 𝑅 ↔ (𝑅 ↾ V) = 𝑅)
41, 3bitri 275 1 (Rel 𝑅 ↔ (𝑅 ↾ V) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  Vcvv 3488  ccnv 5699  cres 5702  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-res 5712
This theorem is referenced by:  elid  6230  cocnvcnv2  6289  f1ovi  6901  ttrclco  9787
  Copyright terms: Public domain W3C validator